Bài 1, 2, 3 trang 122 SGK Toán 4


Bài 1: So sánh hai phân số.

Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

So sánh hai phân số:

a) \( \displaystyle \displaystyle{3 \over 4}\) và \( \displaystyle \displaystyle{4 \over 5}\)                   b) \( \displaystyle \displaystyle{5 \over 6}\) và \( \displaystyle \displaystyle{7 \over 8}\)                  c) \( \displaystyle \displaystyle{2 \over 5}\) và \( \displaystyle \displaystyle{3 \over 10}\).

Phương pháp giải:

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó, rồi so sánh các tử số của hai phân số mới.

Lời giải chi tiết:

a) Quy đồng mẫu số hai phân số \( \displaystyle{3 \over 4}\) và \( \displaystyle{4 \over 5}\) :

\( \displaystyle{3 \over 4} = {{3 \times 5} \over {4 \times 5}} = {{15} \over {20}};\quad \)\( \displaystyle{4 \over 5} = {{4 \times 4} \over {5 \times 4}} = {{16} \over {20}}\)

Vì \( \displaystyle{{15} \over {20}} < {{16} \over {20}}\) nên \( \displaystyle{3 \over 4}<  \displaystyle{4 \over 5}\).

b) Quy đồng mẫu số hai phân số  \( \displaystyle{5 \over 6}\) và \( \displaystyle{7 \over 8}\):

\( \displaystyle{5 \over 6} = {{5 \times 8} \over {6 \times 8}} = {{40} \over {48}}; \quad \)\( \displaystyle{7 \over 8} = {{7 \times 6} \over {8 \times 6}} = {{42} \over {48}}\)

Vì \( \displaystyle{{40} \over {48}} < {{42} \over {48}}\) nên \( \displaystyle{5 \over 6} <  \displaystyle{7 \over 8}\).

c)  Quy đồng mẫu số phân số \( \displaystyle{2 \over 5}\) và giữ nguyên phân số \( \displaystyle{3 \over 10}\):

           \( \displaystyle{2 \over 5} = {{2 \times 2} \over {5 \times 2}} = {4 \over {10}}\)

Vì \( \displaystyle{4 \over {10}} > {3 \over {10}}\) nên \( \displaystyle{2 \over 5} >  \displaystyle{3 \over 10}\).

Bài 2

Rút gọn rồi so sánh hai phân số :

\( \displaystyle \displaystyle{6 \over {10}}\) và \( \displaystyle \displaystyle{4 \over 5}\)                           b) \( \displaystyle \displaystyle{3 \over 4}\) và \( \displaystyle \displaystyle{6 \over {12}}\)

Phương pháp giải:

- Rút gọn các phân số đã cho thành phân số tối giản (nếu được).

- Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó, rồi so sánh các tử số của hai phân số mới.

Lời giải chi tiết:

a) Rút gọn phân số \( \displaystyle{6 \over {10}}\) và giữ nguyên phân số \( \displaystyle{4 \over 5}\):

           \( \displaystyle{6 \over {10}} = {{6:2} \over {10:2}} = {3 \over 5}\)

Vì \( \displaystyle{3 \over 5}<{4 \over 5}\)  nên \( \displaystyle{6 \over {10}} <  \displaystyle{4 \over 5}\) .

b) Rút gọn phân số \( \displaystyle{6 \over {12}}\) và giữ nguyên phân số \( \displaystyle{3 \over 4}\) : 

          \( \displaystyle{6 \over {12}} = {{6:3} \over {12:3}} = {2 \over 4}\)

Vì  \( \displaystyle{3 \over 4} >  \displaystyle{2 \over 4}\) nên  \( \displaystyle{3 \over 4} >  \displaystyle{6 \over {12}}\).

Bài 3

Mai ăn \( \displaystyle \displaystyle{3 \over 8}\) cái bánh, Hoa ăn \( \displaystyle \displaystyle{2 \over 5}\) cái bánh. Ai ăn nhiều bánh hơn ?

Phương pháp giải:

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó, rồi so sánh các tử số của hai phân số mới.

Lời giải chi tiết:

Quy đồng mẫu số hai phân số :

\( \displaystyle\eqalign{
& {3 \over 8} = {{3 \times 5} \over {8 \times 5}} = {{15} \over {40}} ; \cr 
& {2 \over 5} = {{2 \times 8} \over {5 \times 8}} = {{16} \over {40}} .\cr} \)

Vì \( \displaystyle{{16} \over {40}} > {{15} \over {40}}\) nên \(\dfrac{2}{5} > \dfrac{3}{8}\).

Vậy Hoa là người ăn nhiều bánh hơn.

Loigiaihay.com


Bình chọn:
4.7 trên 443 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 4 - Xem ngay

>> Học trực tuyến các môn Toán, Tiếng Việt, Tiếng Anh lớp 4 trên Tuyensinh247.com. Cam kết giúp con lớp 4 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài