Bài 1, 2, 3, 4 trang 137 SGK Toán 4

Bình chọn:
3.5 trên 122 phiếu

Giải bài 1, 2, 3, 4 trang 137 SGK Toán 4. Bài 1. Tính rồi rút gọn:...

Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

Tính rồi rút gọn:

a) \(\displaystyle {2 \over 7}:{4 \over 5};\)                                  b) \( \displaystyle {3 \over 8}:{9 \over 4};\)

c) \(\displaystyle {8 \over {21}}:{4 \over 7};\)                                d) \(\displaystyle {5 \over 8}:{{15} \over 8}\)

Phương pháp:

Muốn chia hai phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.

Cách giải:

a) \( \displaystyle{2 \over 7}:{4 \over 5} = {2 \over 7} \times {5 \over 4} = {{10} \over {28}} = {{10:2} \over {28:2}} = {5 \over {14}};\)

b) \( \displaystyle{3 \over 8}:{9 \over 4} = {3 \over 8} \times {4 \over 9} = {{12} \over {72}} = {{12:12} \over {72:12}} = {1 \over 6};\)

c) \( \displaystyle{8 \over {21}}:{4 \over 7} = {8 \over {21}} \times {7 \over 4} = {{56} \over {84}} \) \(\displaystyle= {{56:28} \over {84:28}}  = {2 \over 3};\)

d) \( \displaystyle{5 \over 8}:{{15} \over 8} = {5 \over 8} \times {8 \over {15}} = {{40} \over {120}} \) \(\displaystyle = {{40:40} \over {120:40}}  = {1 \over 3}.\)

Bài 2

Tính (theo mẫu):

Mẫu: \( \displaystyle 2:{3 \over 4} = {2 \over 1} : { 3 \over 4} = { 2\over 1} \times {4 \over 3 }= {8 \over 3}\)

Ta có thể viết gọn như sau: \( \displaystyle 2:{3 \over 4} = {{2 \times 4} \over 3} = {{8} \over 3}\)

a) \( \displaystyle3:{5 \over 7};\)                              b) \( \displaystyle4:{1 \over 3};\)                             c) \( \displaystyle5:{1 \over 6}.\)

Phương pháp:

 Để chia số tự nhiên cho phân số ta có thể viết số tự nhiên dưới dạng phân số có mẫu số là \(1\), sau đó thực hiện phép chia hai phân số như thông thường; hoặc ta viết gọn lại tương tự như ở ví dụ mẫu.

Cách giải:

\( \displaystyle\eqalign{
& a)\,\,3:{5 \over 7} = {{3 \times 7} \over 5} = {{21} \over 5}; \cr 
& b)\,\,4:{1 \over 3} = {{4 \times 3} \over 1} = 12; \cr 
& c)\,\,5:{1 \over 6} = {{5 \times 6} \over 1} = 30. \cr} \)

Bài 3

Tính bằng hai cách:

\( \displaystyle\eqalign{
& a)\,\,\left( {{1 \over 3} + {1 \over 5}} \right) \times {1 \over 2}; \cr 
& b)\,\,\left( {{1 \over 3} - {1 \over 5}} \right) \times {1 \over 2}. \cr} \)

Phương pháp:

Cách 1: biểu thức có dấu ngoặc thì ta tính trong ngoặc trước, ngoài ngoặc sau.

Cách 2: Áp dụng công thức nhân một tổng hoặc một hiệu với một số:

   \((a+b)\times c = a \times c + b \times c\)  ;                   \((a-b)\times c = a \times c - b \times c\)

Cách giải:

a) Cách 1: 

\( \displaystyle\,\,\left( {{1 \over 3} + {1 \over 5}} \right) \times {1 \over 2} = \left( {{5 \over {15}} + {3 \over {15}}} \right) \times {1 \over 2} \)

\( \displaystyle= {8 \over {15}} \times {1 \over 2} = {{8 \times 1} \over {15 \times 2}} = {8 \over {30}}= {4 \over {15}};\)

Cách 2:

\( \displaystyle\,\,\left( {{1 \over 3} + {1 \over 5}} \right) \times {1 \over 2} = {1 \over 3} \times {1 \over 2} + {1 \over 5} \times {1 \over 2} \)

\( \displaystyle= {1 \over 6} + {1 \over {10}} = {{10} \over {60}} + {6 \over {60}} = {{16} \over {60}} = {4 \over {15}}\)

b) Cách 1:

\( \displaystyle\,\left( {{1 \over 3} - {1 \over 5}} \right) \times {1 \over 2} = \left( {{5 \over {15}} - {3 \over {15}}} \right) \times {1 \over 2} \)

\( \displaystyle= {2 \over {15}} \times {1 \over 2} = {{2 \times 1} \over {15 \times 2}} = {2 \over {30}}= {1 \over {15}}\)

Cách 2:

\( \displaystyle\left( {{1 \over 3} - {1 \over 5}} \right) \times {1 \over 2} = {1 \over 3} \times {1 \over 2} - {1 \over 5} \times {1 \over 2}\)

\( \displaystyle= {1 \over 6} - {1 \over {10}}\)\( \displaystyle= {{10} \over {60}} - {6 \over {60}}\)

\( \displaystyle= {{10 - 6} \over {60}} = {4 \over {60}}  = {1 \over {15}}\)

Bài 4

Cho các phân số \( \displaystyle{1 \over 2}\,;\;{1 \over 3}\,;\;{1 \over 4}\,;\;{1 \over 6}\). Hỏi mỗi phân số đó gấp mấy lần \( \displaystyle{1 \over {12}}\)?

Mẫu: \( \displaystyle{1 \over 2}:{1 \over {12}} = {1 \over 2} \times {{12} \over 1} = {{12} \over 2} = 6\)

Vậy: \( \displaystyle{1 \over 2}\) gấp 6 lần \( \displaystyle{1 \over {12}}\).

Phương pháp: 

Thực hiện phép chia hai phân số để tìm thương của hai phân số đó.

Cách giải:

+) \( \displaystyle{1 \over 3}:{1 \over {12}} = {1 \over 3} \times {{12} \over 1} = {{12} \over 3} = 4\)

Vậy: \( \displaystyle{1 \over 3}\) gấp \(4\) lần \( \displaystyle{1 \over {12}}\).

+) \( \displaystyle{1 \over 4}:{1 \over {12}} = {1 \over 4} \times {{12} \over 1} = {{12} \over 4} = 3\)

Vậy: \( \displaystyle{1 \over 4}\) gấp \(3\) lần \( \displaystyle{1 \over {12}} \).

+) \( \displaystyle{1 \over 6}:{1 \over {12}} = {1 \over 6} \times {{12} \over 1} = {{12} \over 6} = 2\)

Vậy: \( \displaystyle{1 \over 6}\) gấp \(2\) lần \( \displaystyle{1 \over {12}}\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 4 - Xem ngay

Các bài liên quan: - Luyện tập trang 137 SGK Toán 4