Bài 23 trang 12 SGK Toán 8 tập 1

Bình chọn:
4.4 trên 165 phiếu

Giải bài 23 trang 12 SGK Toán 8 tập 1. Chứng minh rằng:

Đề bài

Chứng minh rằng:

\({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab;\)

\({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab.\)

Áp dụng:

a) Tính \({\left( {a - b} \right)^2}\), biết \(a + b = 7\) và \(a . b = 12.\)

b) Tính \({\left( {a + b} \right)^2}\), biết \(a - b = 20\) và \(a . b = 3.\)

Phương pháp giải - Xem chi tiết

Áp dụng bình phương của một tổng, bình phương của một hiệu để biến đổi vế trái hoặc vế phải của từng đẳng thức, đưa về bằng vế còn lại.

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết

* \({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab\)

Cách 1: Biến đổi vế trái:

\(\eqalign{
& {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {a^2} - 2ab + {b^2} + 4ab \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{a^2} - 2ab + {b^2}} \right) + 4ab \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {a - b} \right)^2} + 4ab \cr} \)

Vậy \({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab\)

Cách 2: Biến đổi vế phải:

\(\eqalign{
& {\left( {a - b} \right)^2} + 4ab \cr
& = {a^2} - 2ab + {b^2} + 4ab \cr
& = {a^2} + \left( {4ab - 2ab} \right) + {b^2} \cr
& = {a^2} + 2ab + {b^2} \cr} \)

Vậy \({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab\)

* \({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab\)

Biến đổi vế phải:

\(\eqalign{
& {\left( {a + b} \right)^2} - 4ab \cr
& = {a^2} + 2ab + {b^2} - 4ab \cr
& = {a^2} + \left( {2ab - 4ab} \right) + {b^2} \cr
& = {a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2} \cr} \)

Vậy \({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab\)

Áp dụng: Tính:

a) Với \(a + b = 7\) và \(a . b = 12\) ta có:

\({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab\)

                \(= {7^2} - 4.12 = 49 - 48 = 1\)

b) Với \(a - b = 20\) và \(a . b = 3\) ta có:

\({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab \)

                 \(= {20^2} + 4.3 \)

                 \(= 400 + 12 = 412\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com