Bài 23 trang 12 SGK Toán 8 tập 1


Giải bài 23 trang 12 SGK Toán 8 tập 1. Chứng minh rằng:

Đề bài

Chứng minh rằng:

\({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab;\)

\({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab.\)

Áp dụng:

a) Tính \({\left( {a - b} \right)^2}\), biết \(a + b = 7\) và \(a . b = 12.\)

b) Tính \({\left( {a + b} \right)^2}\), biết \(a - b = 20\) và \(a . b = 3.\)

Phương pháp giải - Xem chi tiết

Áp dụng bình phương của một tổng, bình phương của một hiệu để biến đổi vế trái hoặc vế phải của từng đẳng thức, đưa về bằng vế còn lại.

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết

* \({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab\)

Cách 1: Biến đổi vế trái:

\(\eqalign{
& {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {a^2} - 2ab + {b^2} + 4ab \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{a^2} - 2ab + {b^2}} \right) + 4ab \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {a - b} \right)^2} + 4ab \cr} \)

Vậy \({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab\)

Cách 2: Biến đổi vế phải:

\(\eqalign{
& {\left( {a - b} \right)^2} + 4ab \cr
& = {a^2} - 2ab + {b^2} + 4ab \cr
& = {a^2} + \left( {4ab - 2ab} \right) + {b^2} \cr
& = {a^2} + 2ab + {b^2} \cr 
& =(a+b)^2\cr} \)

Vậy \({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab\)

* \({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab\)

Biến đổi vế phải:

\(\eqalign{
& {\left( {a + b} \right)^2} - 4ab \cr
& = {a^2} + 2ab + {b^2} - 4ab \cr
& = {a^2} + \left( {2ab - 4ab} \right) + {b^2} \cr
& = {a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2} \cr} \)

Vậy \({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab\)

Áp dụng: Tính:

a) Với \(a + b = 7\) và \(a . b = 12\) ta có:

\({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab\)

                \(= {7^2} - 4.12 = 49 - 48 = 1\)

b) Với \(a - b = 20\) và \(a . b = 3\) ta có:

\({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab \)

                 \(= {20^2} + 4.3 \)

                 \(= 400 + 12 = 412\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 277 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài