Bài 21 trang 12 SGK Toán 8 tập 1


Giải bài 21 trang 12 SGK Toán 8 tập 1. Viết các đa thức sau dưới dạng bình phương của một tổng

Đề bài

Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) \(9{x^2}-6x + 1\);                           

b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1\).

Hãy nêu một đề bài tương tự.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng bình phương của một tổng, bình phương của một hiệu.

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết

a) \(9{x^2}-6x + 1 = {\left( {3x} \right)^2}-2.3x.1 + {1^2}\) \( = {\left( {3x-1} \right)^2}\)

Hoặc 

\(9{x^2}-6x + 1 = 1-6x + 9{x^2} \) \(= {1^2} - 2.1.3x + {\left( {3x} \right)^2} = {\left( {1-3x} \right)^2}\)        

b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \) \(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\)

Áp dụng hằng đẳng thức thứ nhất \( {A^2} + 2AB + {B^2} = {\left( {A + B} \right)^2}\) với \(A=2x+3y\); \(B=1\) ta được:

\({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \)

\(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\)

\( = {\left[ {\left( {2x{\rm{ }} + {\rm{ }}3y} \right) + 1} \right]^2} = {\left( {2x{\rm{ }} + {\rm{ }}3y + 1} \right)^2}\)

Đề bài tương tự. Chẳng hạn:

\(1 + 2\left( {x + 2y} \right) + {\left( {x + 2y} \right)^2}\);

\(4{x^2}-12x + 9\); …

Loigiaihay.com


Bình chọn:
4.4 trên 220 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài