Lý thuyết Hình bình hành>
Hình bình hành là tứ giác có các cạnh đối song song
I. Các kiến thức cần nhớ
Định nghĩa: Hình bình hành là tứ giác có các cạnh đối song song.
Ví dụ: Tứ giác \(ABCD\) là hình bình hành \( \Leftrightarrow \left\{ \begin{array}{l}AB{\rm{//}}CD\\AD{\rm{//}}BC\end{array} \right.\)
Tính chất:
Trong hình bình hành:
+ Các cạnh đối bằng nhau
+ Các góc đối bằng nhau
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường
Dấu hiệu nhận biết:
+ Tứ giác có các cạnh đối song song là hình bình hành
+ Tứ giác có các cạnh đối bằng nhau là hình bình hành.
+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
+ Tứ giác có các góc đối bằng nhau là hình bình hành.
+ Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Chú ý: Hình bình hành là một hình thang đặc biệt (hình bình hành là hình thang có hai cạnh bên song song)
Ví dụ:
+Tứ giác \(ABCD\) là hình bình hành nên \(\left\{ \begin{array}{l}AB = DC;\,AD = BC\\AB{\rm{//}}DC{\rm{;}}\,AD{\rm{//}}BC\\\widehat A = \widehat C;\,\widehat B = \widehat D\\OA = OC;\,OB = OD\end{array} \right.\)
II. Các dạng toán thường gặp
Dạng 1: Vận dụng tính chất hình bình hành để chứng minh tính chất hình học và tính toán.
Phương pháp:
Sử dụng tính chất hình bình hành:
Trong hình bình hành:
+ Các cạnh đối bằng nhau
+ Các góc đối bằng nhau
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường
Dạng 2: Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành.
Phương pháp:
Dấu hiệu nhận biết:
+ Tứ giác có các cạnh đối song song là hình bình hành
+ Tứ giác có các cạnh đối bằng nhau là hình bình hành.
+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
+ Tứ giác có các góc đối bằng nhau là hình bình hành.
+ Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
- Trả lời câu hỏi 1 Bài 7 trang 90 SGK Toán 8 Tập 1
- Trả lời câu hỏi 2 Bài 7 trang 90 SGK Toán 8 Tập 1
- Trả lời câu hỏi 3 Bài 7 trang 92 SGK Toán 8 Tập 1
- Bài 43 trang 92 SGK Toán 8 tập 1
- Bài 44 trang 92 SGK Toán 8 tập 1
>> Xem thêm