Bài 44 trang 92 SGK Toán 8 tập 1


Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh rằng BE = DF.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho hình bình hành \(ABCD\). Gọi  \(E\) là trung điểm của \(AD\), \(F\) là trung điểm của \(BC\). Chứng minh rằng \(BE = DF\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng:

+) Hình bình hành có các cặp cạnh đối song song và bằng nhau.

+) Dấu hiệu nhận biết hình bình hành: Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

Lời giải chi tiết

\(ABCD\) hình bình hành nên  \(DE // BF\) và \(AD=BC\)

\(E\) là trung điểm của \(AD\) (giả thiết) nên \(DE = \dfrac{1}{2}AD\) (tính chất trung điểm)

\(F\) là trung điểm của \(BC\) (giả thiết) nên \(BF= \dfrac{1}{2}BC\) (tính chất trung điểm)

Mà \(AD=BC\) (chứng minh trên) nên \(DE=BF\)

Tứ giác \(BEDF\) có \(DE//BF\) và \(DE=BF\) (chứng minh trên) 

\( \Rightarrow \) Tứ giác \(BEDF\) là hình bình hành (theo dấu hiệu nhận biết hình bình hành).

\( \Rightarrow \) \(BE = DF\) (tính chất hình bình hành).

Cách khác: 

+ \(ABCD\) là hình bình hành \(⇒ AB = CD, AD = BC, \widehat A=\widehat C.\)

+ \(E\) là trung điểm của \(AD\) \( ⇒ AE = \dfrac{1}{2}AD\) (tính chất trung điểm)

\(F\) là trung điểm của \(BC \) \(⇒ BF= \dfrac{1}{2}BC\) (tính chất trung điểm)

Mà \(AD = BC\) (chứng minh trên) \(⇒ AE = CF\)

+ Xét \(ΔAEB\) và \(ΔCFD\) có: \(AB = CD, \widehat A=\widehat C, AE = CF\) (chứng minh trên)

\(⇒ ΔAEB = ΔCFD (c.g.c)\)

\(⇒ EB = DF.\)

Loigiaihay.com


Bình chọn:
4.6 trên 309 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí