Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 1 - Đại số 8


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 1 - Đại số 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Làm phép nhân:

\(a)\;\left( {2 + x} \right)\left( {2 - x} \right)\left( {4 + {x^2}} \right)\)

\(b)\;\left( {{x^2} - 2xy + 2{y^2}} \right)\left( {x - y} \right)\left( {x + y} \right).\)

Bài 2. Tìm x, biết: \(x\left( {x - 4} \right) - \left( {{x^2} - 8} \right) = 0.\)

Bài 3. Tìm m sao cho với mọi x, ta có: \(2{x^3} - 3{x^2} + x + m\)\(\; = \left( {x + 2} \right)\left( {2{x^2} - 7x + 15} \right).\)

LG bài 1

Phương pháp giải:

Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Lời giải chi tiết:

a) \(\left( {2 + x} \right)\left( {2 - x} \right)\left( {4 + {x^2}} \right)\)

\(= \left( {4 - 2x + 2x - {x^2}} \right)\left( {4 + {x^2}} \right) \)

\(= \left( {4 - {x^2}} \right)\left( {4 + {x^2}} \right)\)

\(=16 + 4{x^2} - 4{x^2} - {x^4} = 16 - {x^4}.\)

b) \(\left( {{x^2} - 2xy + 2{y^2}} \right)\left( {x - y} \right)\left( {x + y} \right) \) 

\(= \left( {{x^2} - 2xy + 2{y^2}} \right)\left( {{x^2} + xy - xy - {y^2}} \right)\)

\(=\left( {{x^2} - 2xy + 2{y^2}} \right)\left( {{x^2} - {y^2}} \right) \)

\(= {x^4} - {x^2}{y^2} - 2{x^3}y + 2x{y^3} + 2{x^2}{y^2} - 2{y^4}.\)

\(={x^4} + {x^2}{y^2} - 2{x^3}y + 2x{y^3} - 2{y^4}.\)

LG bài 2

Phương pháp giải:

Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Lời giải chi tiết:

Ta có: \(x\left( {x - 4} \right) - \left( {{x^2} - 8} \right)=0 \)

\(\Rightarrow {x^2} - 4x - {x^2} + 8 =0  \) 

\( \Rightarrow - 4x + 8 = 0\) 

\( \Rightarrow -4x=-8\)

\( \Rightarrow x = 2.\)

Vậy \(x=2\)

LG bài 3

Phương pháp giải:

Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Lời giải chi tiết:

Ta có

\(\left( {x + 2} \right)\left( {2{x^2} - 7x + 15} \right)\)

\(= 2{x^3} - 7{x^2} + 15x + 4{x^2} - 14x + 30\)

\( = 2{x^3} - 3{x^2} + x + 30\)

Vì \(2{x^3} - 3{x^2} + x + m \)\(\;= 2{x^3} - 3{x^2} + x + 30 \Rightarrow m = 30.\)

Cách khác: 

Cho \(x =  - 2\) thì vế phải bằng 0. Khi đó vế trái bằng \(m - 30.\) Do đó m = 30. Thử lại thấy thỏa mãn.

Loigiaihay.com


Bình chọn:
3.3 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí