Đề kiểm tra 15 phút - Đề số 7 - Bài 6 - Chương 2 - Hình học 8


Đề bài

Cho hình thang ABCD \(\left( {AB// CD} \right).\) Gọi M, N lần lượt là trung điểm của các cạnh bên AD và BC, kẻ \(MH \bot CD\) (H thuộc CD) và MH cắt đường thẳng ABV tại I, kẻ \(NK \bot CD\) (K thuộc CD) và NK cắt AB tại I

Chứng minh: \({S_{ABCD}} = {S_{HKLI}}.\)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Các tam giác bằng nhau có diện tích bằng nhau

Lời giải chi tiết

 

Ta có: \(\Delta AMI = \Delta DMH\) (ch-gn)

\( \Rightarrow {S_1} = {S_2}\) tương tự \({S_3} = {S_4}.\)

\({S_{ABCD}} = {S_2} + {S_{ABNHK}} + {S_4}\)

\({S_{HKLI}} = {S_1} + {S_{ABNHK}} + {S_3}\)

Vậy \({S_{ABCD}} = {S_{HKLI}}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.