Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 8


Đề bài

Cho hình thang ABCD \(\left( {AB//CD} \right)\). Gọi O là giao điểm của hai đường chéo AC và BD.

a) Chứng minh rằng: \({S_{AOD}} = {S_{BOC}}.\) 

b) Gọi M là trung điểm của BC. Từ M kẻ đường thẳng song song với AD cắt AB tại E và DC tại F.

Chứng minh rằng: \({S_{ABCD}} = {S_{AEFD}}.\)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Diện tích tam giác bằng nửa tích đường cao với cạnh đáy tương ứng

Các tam giác bằng nhau có diện tích bằng nhau

Lời giải chi tiết

a)

Ta có \({S_{ADC}} = {S_{DBC}}\) (chung đáy DC và đường cao AH = BK)

\( \Rightarrow {S_{ADC}} - {S_{DOC}} = {S_{DBC}} - {S_{DOC}}\)

Hay \({S_{AOD}} = {S_{BOC}}.\)

b)

Ta có: \(\Delta BME = \Delta CMF(g.c.g)\)

\( \Rightarrow {S_{BME}} = {S_{CMF}}\)

\( \Rightarrow {S_{BME}} + {S_{ABMFD}} = {S_{CMF}} + {S_{ABMFD}}\)

Hay \({S_{AEFD}} = {S_{ABCD}}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 6. Diện tích đa giác

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.