Bài 71 trang 103 SGK Toán 8 tập 1

Bình chọn:
4.3 trên 271 phiếu

Giải bài 71 trang 103 SGK Toán 8 tập 1. Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC ...

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\). Lấy \(M\) là một điểm bất kì thuộc cạnh \(BC\). Gọi \(MD\) là đường vuông góc kẻ từ \(M\) đến \(AB\), \(ME\) là đường vuông góc kẻ từ \(M\) đến \(AC\), \(O\) là trung điểm của \(DE\).

a) Chứng mình rằng ba điểm \(A, O, M\) thẳng hàng.

b) Khi điểm \(M\) di chuyển trên cạnh \(BC\) thì điểm \(O\) di chuyển trên đường nào ?

c) Điểm \(M\) ở vị trí nào trên cạnh \(BC\) thì \(AM\) có độ dài nhỏ nhất ?

Phương pháp giải - Xem chi tiết

+) Đường trung bình của tam giác thì song song với cạnh thứ 3 và bằng nửa độ dài cạnh ấy.

+) Dấu hiệu nhận biết hình chữ nhật là tứ giác có ba góc vuông.

Lời giải chi tiết

a) Tứ giác \(ADME\) có: \(\widehat {DA{\rm{E}}} = \widehat {AD{\rm{E}}} = \widehat {A{\rm{EM}}} = {90^0}\left( {gt} \right)\)

 \(\Rightarrow \) Tứ giác \(ADME\) là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

Vì \(O\) là trung điểm của đường chéo \(DE\) (gt)

 \(\Rightarrow \) \(O\) cũng là trung điểm của \(AM\) (tính chất hình chữ nhật)

Vậy \(A, O, M\) thẳng hàng.

b) Kẻ \(AH ⊥ BC\).

Cách 1:

Kẻ \(OK ⊥ BC\). Ta có \(OA = OM\) (cmt)

\(OK // AH\) (do cùng vuông góc với \(BC\)).

 \(\Rightarrow \) \(K\) là trung điểm của \(MH\) (Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba)

 \(\Rightarrow \)  \(OK =\dfrac{1}{2}AH\) (tính chất đường trung bình của tam giác)

Điểm \(O\) cách đoạn \(BC\) cố định một khoảng không đổi bằng \(\dfrac{1}{2}AH\).

Mặt khác khi \(M\) trùng \(C\) thì \(O\) chính là trung điểm của \(AC\), khi \(M\) trùng \(B\) thì \(O\) chính là trung điểm của \(AB\).

Vậy \(O\) di chuyển trên đoạn thẳng \(PQ\) là đường trung bình của \(\Delta ABC\).

Cách 2:

Vì \(O\) là trung điểm của \(AM\) nên \(HO\) là trung tuyến ứng với cạnh huyền \(AM\). Do đó \(OA = OH\). Suy ra điểm \(O\) di chuyển trên đường trung trực của \(AH\).

Mặt khác vì \(M\) di chuyển trên đoạn \(BC\). Vậy điểm \(O\) di chuyển trên đoạn thẳng \(PQ\) là đường trung bình của \(ABC\).

c) Ta có \(AH\) là đường cao hạ từ \(A\) đến \(BC\) do đó \(AM\ge AH\) (trong tam giác vuông, cạnh huyền là cạnh lớn nhất).

Vậy \(AM\) nhỏ nhất bằng \(AH\)  khi \(M\) trùng \(H\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Bài 72 trang 103 SGK Toán 8 tập 1 Bài 72 trang 103 SGK Toán 8 tập 1

Giải bài 72 trang 103 SGK Toán 8 tập 1. Đố. Để vạch một đường thẳng song song với mép gỗ 10cm, bác thợ mộc đặt đoạn bút chì CD dài 10cm vuông góc với ngón tay

Xem chi tiết
Đề kiểm tra 15 phút - Đề số 1 - Bài 9, 10 - Chương 1 - Hình học 8 Đề kiểm tra 15 phút - Đề số 1 - Bài 9, 10 - Chương 1 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 9, 10 - Chương 1 - Hình học 8

Xem chi tiết
Đề kiểm tra 15 phút - Đề số 2 - Bài 9, 10 - Chương 1 - Hình học 8 Đề kiểm tra 15 phút - Đề số 2 - Bài 9, 10 - Chương 1 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 9, 10 - Chương 1 - Hình học 8

Xem chi tiết
Đề kiểm tra 15 phút - Đề số 3 - Bài 9, 10 - Chương 1 - Hình học 8 Đề kiểm tra 15 phút - Đề số 3 - Bài 9, 10 - Chương 1 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 9, 10 - Chương 1 - Hình học 8

Xem chi tiết
Bài 7 trang 39 SGK Toán 8 tập 1 Bài 7 trang 39 SGK Toán 8 tập 1

Giải bài 7 trang 39 SGK Toán 8 tập 1. Rút gọn phân thức:

Xem chi tiết
Bài 1 trang 36 SGK Toán 8 tập 1 Bài 1 trang 36 SGK Toán 8 tập 1

Giải bài 1 trang 36 SGK Toán 8 tập 1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

Xem chi tiết
Bài 14 trang 43 SGK Toán 8 tập 1 Bài 14 trang 43 SGK Toán 8 tập 1

Giải bài 14 trang 43 SGK Toán 8 tập 1. Quy dồng mẫu thức các phân thức sau:

Xem chi tiết
Bài 88 trang 111 SGK Toán 8 tập 1 Bài 88 trang 111 SGK Toán 8 tập 1

Giải bài 88 trang 111 SGK Toán 8 tập 1. Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD có điều kiện gì thì EFGH là:

Xem chi tiết

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.