Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 2 - Hình học 8


Đề bài

a) Cho tam giác ABC có M, N lần lượt là trung điểm của AB, AC. Chưng minh rằng: \({S_{ABC}} = 4{S_{AMN}}.\)

b) Cho \(\Delta ABC.\) Gọi \(A'B'C'\) lần lượt là trung điểm của BC, AC và AB. Biết diện tích của \(\Delta ABC\) là \(12c{m^2}\) . Tính \(S(A'B'C').\)

Phương pháp giải - Xem chi tiết

Sử dụng:

Diện tích tam giác bằng nửa tích đường cao với cạnh đáy tương ứng

Các tam giác bằng nhau có diện tích bằng nhau

Lời giải chi tiết

a)

BN là trung tuyến của \(\Delta ABC\) nên

\({S_{ANB}} = {S_{BNC}} = {1 \over 2}{S_{ABC}}\) (chung đường cao, đáy tương ứng bằng nhau).

Tương tự NM là trung tuyến của \(\Delta ANB\) nên \({S_{AMN}} = {S_{BNM}} = {1 \over 2}{S_{ANB}}.\)

Do đó: \({S_{AMN}} = {1 \over 4}{S_{ABC}}\) hay \({S_{ABC}} = 4{S_{AMN}}.\) 

b) Ta có \(C'B',B'A',A'C'\) là các đường trung bình của \(\Delta ABC\) nên các tam giác sau đây bằng nhau:

\(\Delta AC'B' = \Delta A'B'C' = \Delta  C'BA' \)\(\,= \Delta B'A'C\left( {c.c.c} \right)\)

\( \Rightarrow {S_1} = {S_2} = {S_3} = {S_4} = {1 \over 4}{S_{ABC}}\)

Hay \({S_{A'B'C'}} = {1 \over 4}{S_{ABC}} = {{12} \over 4} = 3c{m^2}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Diện tích tam giác

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.