Bài 18 trang 121 SGK Toán 8 tập 1


Đề bài

Cho tam giác \(ABC\) và đường trung tuyến \(AM\) (h.\(132\)). Chứng minh rằng:

\({S_{AMB}} = {S_{AMC}}\)

 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Dựng \(AH\) là đường cao của \(\Delta ABC\).

- Áp dụng công thức tính diện tích tam giác.

Lời giải chi tiết

Dựng \(AH\) là đường cao của \(\Delta ABC\), khi đó \(\Delta ABM,\Delta AMC\) có chung chiều cao \(AH\).

Ta có:

\({S_{AMB}} = \dfrac{1}{2}BM.AH\) (chiều cao \(AH\) và cạnh đáy \(BM\)) 

\({S_{AMC}} = \dfrac{1}{2}CM.AH\) (chiều cao \(AH\) và cạnh đáy \(CM\)) 

Mà \(BM = CM\) (vì \(AM\) là đường trung tuyến)

Vậy  \({S_{AMB}} = {S_{AMC}}.\)

Loigiaihay.com


Bình chọn:
4.4 trên 133 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.