Bài 25 trang 123 SGK Toán 8 tập 1


Đề bài

Tính diện tích của một tam giác đều có cạnh là \(a.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Tam giác đều là tam giác có ba cạnh bằng nhau.

- Định lí Pytago: bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

- Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.

Lời giải chi tiết

Gọi \(h\) là chiều cao của tam giác đều cạnh \(a\)

Xét tam giác \(ABC\) đều cạnh \(a\), chiều cao \(AH=h\). Ta tính diện tích tam giác \(ABC\).

Vì tam giác \(ABC\) đều cạnh \(a\) có \(AH\) vừa là đường cao đồng thời là trung tuyến ứng với cạnh \(BC\) (tính chất tam giác đều).

Do đó \(H\) là trung điểm của \(BC\).

Hay \(BH = \dfrac{1}{2}BC = \dfrac{a}{2}\)

Áp dụng định lí Pitago vào tam giác vuông \(ABH\) ta có:

\(A{H^2} = A{B^2} - B{H^2}\)

\({h^2} = {a^2} - {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{3{a^2}}}{4}\)

\( \Rightarrow h = \dfrac{{a\sqrt 3 }}{2}\)

Vậy diện tích tam giác \(ABC\) là: 

\(S _{ABC}= \dfrac{1}{2}ah = \dfrac{1}{2}a.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Loigiaihay.com


Bình chọn:
4.5 trên 70 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.