Bài 25 trang 123 SGK Toán 8 tập 1

Bình chọn:
4.4 trên 50 phiếu

Giải bài 25 trang 123 SGK Toán 8 tập 1. Tính diện tích của một tam giác đều có cạnh là a.

Đề bài

Tính diện tích của một tam giác đều có cạnh là \(a.\)

Phương pháp giải - Xem chi tiết

Áp dụng tính chất tam giác đều, định lí pitago, công thức tính diện tích tam giác.

Lời giải chi tiết

Gọi \(h\) là chiều cao của tam giác đều cạnh \(a\)

Tam giác \(ABC\) đều cạnh \(a\) có \(AH\) vừa là đường cao đồng thời là trung tuyến ứng với cạnh \(BC\) (tính chất tam giác đều).

Do đó \(H\) là trung điểm của \(BC\).

Hay \(BH = \dfrac{1}{2}BC = \dfrac{a}{2}\)

Áp dụng định lí Pitago vào tam giác vuông \(ABH\) ta có:

\(A{H^2} = A{B^2} - B{H^2}\)

\({h^2} = {a^2} - {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{3{a^2}}}{4}\)

\( \Rightarrow h = \dfrac{{a\sqrt 3 }}{2}\)

Vậy \(S _{ABC}= \dfrac{1}{2}ah = \dfrac{1}{2}a.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 3. Diện tích tam giác

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com