Bài 24 trang 47 SGK Toán 8 tập 2


Giải bài 24 trang 47 SGK Toán 8 tập 2. Giải các bất phương trình:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình:

LG a.

\(2x - 1 > 5\);   

Phương pháp giải:

Áp dụng: Quy tắc chuyển vế và quy tắc nhân hai vế với một số.

Lời giải chi tiết:

\(\eqalign{
& \,2x - 1 > 5 \cr 
& \Leftrightarrow 2x > 5 + 1 \cr 
& \Leftrightarrow 2x > 6 \cr 
& \Leftrightarrow x > 6:2 \cr 
& \Leftrightarrow x > 3 \cr} \)

Vậy nghiệm của bất phương trình là \(x > 3\).

LG b.

\(3x - 2 < 4\);

Phương pháp giải:

Áp dụng: Quy tắc chuyển vế và quy tắc nhân hai vế với một số.

Lời giải chi tiết:

\(\eqalign{
& \,\,3x - 2 < 4 \cr 
& \Leftrightarrow 3x < 4 + 2 \cr 
& \Leftrightarrow 3x < 6 \cr 
& \Leftrightarrow x < 6:3 \cr 
& \Leftrightarrow x < 2 \cr} \)

Vậy nghiệm của bất phương trình là \(x < 2\).

LG c.

\(2 - 5x ≤ 17\); 

Phương pháp giải:

Áp dụng: Quy tắc chuyển vế và quy tắc nhân hai vế với một số.

Lời giải chi tiết:

\(\eqalign{
& \,\,2 - 5x \le 17 \cr 
& \Leftrightarrow - 5x \le 17 - 2 \cr 
& \Leftrightarrow - 5x \le 15 \cr 
& \Leftrightarrow x \ge 15:\left( { - 5} \right) \cr 
& \Leftrightarrow x \ge - 3 \cr} \)

Vậy nghiệm của bất phương trình là \(x ≥ -3\) 

LG d.

\(3 - 4x ≥ 19\).

Phương pháp giải:

Áp dụng: Quy tắc chuyển vế và quy tắc nhân hai vế với một số.

Lời giải chi tiết:

\(\eqalign{
& \,\,3 - 4x \ge 19 \cr 
& \Leftrightarrow - 4x \ge 19 - 3 \cr 
& \Leftrightarrow - 4x \ge 16 \cr 
& \Leftrightarrow x \le 16:\left( { - 4} \right) \cr 
& \Leftrightarrow x \le - 4 \cr} \)

Vậy nghiệm của bất phương trình là \(x ≤ -4\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 79 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài