Bài 23 trang 47 SGK Toán 8 tập 2


Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

LG a.

\(2x - 3 > 0\);     

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

\(\eqalign{& \,\,2x - 3 > 0 \cr & \Leftrightarrow 2x > 3 \cr & \Leftrightarrow x > {3 \over 2} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x > \dfrac{3}{2}} \right\}\)

Biểu diễn tập nghiệm trên trục số:

LG b.

\(3x + 4 < 0\);

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

\(\eqalign{
& \,\,3x + 4 < 0 \cr 
& \Leftrightarrow 3x < - 4 \cr 
& \Leftrightarrow x < {{ - 4} \over 3} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x < \dfrac{{ - 4}}{3}} \right\}\)

Biểu diễn tập nghiệm trên trục số: 

LG c.

\(4 - 3x ≤ 0\);

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

\(\eqalign{
& \,\,4 - 3x \le 0 \cr 
& \Leftrightarrow - 3x \le - 4 \cr 
& \Leftrightarrow \left( {{{ - 1} \over 3}} \right).\left( { - 3x} \right) \ge \left( { - 4} \right).\left( {{{ - 1} \over 3}} \right) \cr 
& \Leftrightarrow x \ge {4 \over 3} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x \geqslant \dfrac{4}{3}} \right\}\)

Biểu diễn tập nghiệm trên trục số: 

LG d.

\(5 - 2x ≥ 0\).

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

\(\eqalign{
& \,\,5 - 2x \ge 0 \cr 
& \Leftrightarrow - 2x \ge - 5 \cr 
& \Leftrightarrow \left( {{{ - 1} \over 2}} \right).\left( { - 2x} \right) \le \left( { - 5} \right).\left( {{{ - 1} \over 2}} \right) \cr 
& \Leftrightarrow x \le {5 \over 2} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x \leqslant \dfrac{5}{2}} \right\}\)

Biểu diễn tập nghiệm trên trục số:

Loigiaihay.com


Bình chọn:
4.3 trên 156 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí