Bài 15 trang 131 SGK Toán 8 tập 2


Giải bài 15 trang 131 SGK Toán 8 tập 2. Giải bất phương trình:

Đề bài

Giải bất phương trình:

\(\dfrac{{x - 1}}{{x - 3}} > 1\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Bước 1: Chuyển tất cả các hạng tử sang vế trái.

- Bước 2: Qui đồng cùng mẫu thức chung.

- Bước 3: Rút gọn, tìm nghiệm của bất phương trình.

- Bước 4: Kết luận.

Lời giải chi tiết

Điều kiện xác định: \(x\ne 3\) 

\(\eqalign{
&{{x - 1} \over {x - 3}} > 1 \cr
& \Leftrightarrow {{x - 1} \over {x - 3}} - 1 > 0 \cr
& \Leftrightarrow {{x - 1} \over {x - 3}} - {{x - 3} \over {x - 3}} > 0 \cr
& \Leftrightarrow {{x - 1 - \left( {x - 3} \right)} \over {x - 3}} > 0 \cr
& \Leftrightarrow {{x - 1 - x + 3} \over {x - 3}} > 0 \cr
& \Leftrightarrow {2 \over {x - 3}} > 0 \cr
& \Leftrightarrow x - 3 > 0 \cr
& \Leftrightarrow x > 3 (tmđk)\cr} \)

Vậy nghiệm của bất phương trình là \( x > 3\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 19 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài