Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Hình học 9

Đề bài

Cạnh huyền của một tam giác vuông là 10cm, các cạnh góc vuông tỉ lệ với 4 và 3. Tính độ dài hình chiếu của mỗi cạnh góc vuông lên cạnh huyền.

Phương pháp giải - Xem chi tiết

Sử dụng:

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\), ta có: \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\) 

Tính chất của dãy tỉ số bằng nhau: \(\dfrac {a}{b}=\dfrac {c}d=\dfrac{a+c}{b+d}\)

Lời giải chi tiết

Tam giác ABC vuông tại A, chiều cao AH có \(AB=c;AC=b;BC=a=10cm\) 

Theo bài ra, ta có: \({b \over c} = {4 \over 3} \Rightarrow {b \over 4} = {c \over 3}\)

\(\eqalign{  &  \Rightarrow {{{b^2}} \over {16}} = {{{c^2}} \over 9} = {{{b^2} + {c^2}} \over {16 + 9}} = {{{a^2}} \over {25}} \cr&\;\;\;\;\;\;\;\;\;\;\;= {{{{10}^2}} \over {25}} = 4  \cr  &  \Rightarrow {b^2} = 4.16 \Rightarrow b = 8\,\left( {cm} \right) \cr} \)

Và \(c^2=9.4=36\) suy ra \(c = 6cm\)

\(∆ABC\) vuông tại A, đường cao AH. 

Ta có: \({b^2} = a.b'\) (định lí 1) \( \Rightarrow b' = {{{b^2}} \over a} = {{{8^2}} \over {10}} = 6,4\,\left( {cm} \right)\)

Do đó: \(c' = a - b' = 10 - 6,4 = 3,6\,\left( {cm} \right)\)

Cách khác: Đặt \(b = 4k, c = 3k\) (vì \({b \over 4} = {c \over 3} = k\)), ta có:

\(\eqalign{  & {\left( {4k} \right)^2} + {\left( {3k} \right)^2} = {10^2} \cr&\Leftrightarrow 16{k^2} + 9{k^2} = 100  \cr  &  \Leftrightarrow 25{k^2} = 100\cr& \Leftrightarrow {k^2} = 4 \Leftrightarrow k = 2 \cr} \)

Do đó: \(b = 4.2 = 8\; (cm)\) và \(c = 3.2 = 6\; (cm)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 10 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài