Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 1 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 1 - Hình học 9

Đề bài

Cho ∆ABC vuông tại A có \(AB = 30cm\), đường cao \(AH = 24cm\).

a. Tính BH, BC, AC.

b. Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD.

Phương pháp giải - Xem chi tiết

Sử dụng định lý Pytago và hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\) 

+) \(H{A^2} = HB.HC\)  

+) \(AB.AC = BC.AH\) 

+) \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}}\)

+) \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago). 

Lời giải chi tiết

a. Ta có: ∆AHB vuông tại H. Theo định lí Pi-ta-go :

\(\eqalign{  & B{H^2} = A{B^2} - A{H^2}  \cr  &  \Rightarrow BH = \sqrt {A{B^2} - A{H^2}}  \cr&\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt {{{30}^2} - {{24}^2}}  = 18\,\left( {cm} \right) \cr} \)

Lại có ∆ABC vuông tại A

\(A{B^2} = BC.BH\) (định lí 1)

\( \Rightarrow BC = {{A{B^2}} \over {BH}}\)\(\; = {{{{30}^2}} \over {18}} = 50\,cm\)

Do đó \(A{C^2} = B{C^2} - A{B^2}\) (định lí Pi-ta-go)

\( \Rightarrow AC = \sqrt {B{C^2} - A{B^2}}  \)\(\;= \sqrt {{{50}^2} - {{30}^2}}  = 40\,\left( {cm} \right)\) 

b.

 

Ta có: ∆ABD vuông tại B, đường cao là BH nên:

\(A{B^2} = AD.AH\)  (định lí 1)

\( \Rightarrow AD = {{A{B^2}} \over {AH}} = {{{{30}^2}} \over {24}} = 37,5\,\left( {cm} \right)\)

Do đó \(HD = AD - AH = 37,5 - 24 \)\(\;= 13,5\,\left( {cm} \right)\)

\( \Rightarrow B{D^2} = AD.HD\) (định lí 1)

\( \Rightarrow BD = \sqrt {AD.HD}  = \sqrt {37,5.13,5}  \)\(\;= 22,5\,\left( {cm} \right)\)

 Loigiaihay.com


Bình chọn:
4.4 trên 39 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí