

Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 1 - Hình học 9>
Đề bài
Cho ∆ABC vuông tại A có \(AB = 30cm\), đường cao \(AH = 24cm\).
a. Tính BH, BC, AC.
b. Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD.
Phương pháp giải - Xem chi tiết
Sử dụng định lý Pytago và hệ thức lượng trong tam giác vuông.
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:
+) \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\)
+) \(H{A^2} = HB.HC\)
+) \(AB.AC = BC.AH\)
+) \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}}\)
+) \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago).
Lời giải chi tiết
a. Ta có: ∆AHB vuông tại H. Theo định lí Pi-ta-go :
\(\eqalign{ & B{H^2} = A{B^2} - A{H^2} \cr & \Rightarrow BH = \sqrt {A{B^2} - A{H^2}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt {{{30}^2} - {{24}^2}} = 18\,\left( {cm} \right) \cr} \)
Lại có ∆ABC vuông tại A
\(A{B^2} = BC.BH\) (định lí 1)
\( \Rightarrow BC = {{A{B^2}} \over {BH}}\)\(\; = {{{{30}^2}} \over {18}} = 50\,cm\)
Do đó \(A{C^2} = B{C^2} - A{B^2}\) (định lí Pi-ta-go)
\( \Rightarrow AC = \sqrt {B{C^2} - A{B^2}} \)\(\;= \sqrt {{{50}^2} - {{30}^2}} = 40\,\left( {cm} \right)\)
b.
Ta có: ∆ABD vuông tại B, đường cao là BH nên:
\(A{B^2} = AD.AH\) (định lí 1)
\( \Rightarrow AD = {{A{B^2}} \over {AH}} = {{{{30}^2}} \over {24}} = 37,5\,\left( {cm} \right)\)
Do đó \(HD = AD - AH = 37,5 - 24 \)\(\;= 13,5\,\left( {cm} \right)\)
\( \Rightarrow B{D^2} = AD.HD\) (định lí 1)
\( \Rightarrow BD = \sqrt {AD.HD} = \sqrt {37,5.13,5} \)\(\;= 22,5\,\left( {cm} \right)\)
Loigiaihay.com


- Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 1 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 1 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 1 - Chương 1 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 6 - Bài 1 - Chương 1 - Hình học 9
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết đường thẳng song song và đường thẳng cắt nhau.
- Lý thuyết tứ giác nội tiếp
- Lý thuyết góc nội tiếp
- Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
- Lý thuyết về căn bậc ba.
- Lý thuyết về đường kính và dây của đường tròn
- Bài 62 trang 33 SGK Toán 9 tập 1
- Lý thuyết Công thức nghiệm của phương trình bậc hai
- Bài 1 trang 68 SGK Toán 9 tập 1
- Lý thuyết hàm số bậc nhất.