Bài 56 trang 25 SGK Toán 8 tập 1

Bình chọn:
4.5 trên 139 phiếu

Giải bài 56 trang 25 SGK Toán 8 tập 1. Tính nhanh giá trị của đa thức:

Đề bài

Tính nhanh giá trị của đa thức:

a) \(x^2+ \frac{1}{2}x+ \frac{1}{16}\) tại \(x = 49,75\);            

b) \(x^2– y^2– 2y – 1\) tại \(x = 93\) và \(y = 6\).

Phương pháp giải - Xem chi tiết

- Phân tích các đa thức đó thành nhân tử rồi thay các giá trị tương ứng của \(x, y\) để tính giá trị của đa thức đó.

Lời giải chi tiết

a) \(x^2+ \frac{1}{2}x+ \frac{1}{16}\) tại \(x = 49,75\)

Ta có: \(x^2+ \frac{1}{2}x+ \frac{1}{16} = x^2+ 2 . x . \frac{1}{4} + \left ( \frac{1}{4} \right )^{2}\)\(= \left ( x + \frac{1}{4} \right )^{2}\)

Với \(x = 49,75\) ta có: \(\left ( 49,75 + \frac{1}{4} \right )^{2}= (49,75 + 0,25)^2\)\(= 50^2= 2500\)

b) \(x^2– y^2– 2y – 1\) tại \(x = 93\) và \(y = 6\)

Ta có: \({x^2}-{\rm{ }}{y^2}-{\rm{ }}2y{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}({y^2} + {\rm{ }}2y{\rm{ }} + {\rm{ }}1)\)

                                          \(= {\rm{ }}{x^2} - {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}1} \right)^2}\)

                                          \(= {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}1} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right)\)

Với \(x = 93, y = 6\) ta được:

\((93 - 6 - 1)(93 + 6 + 1) = 86 . 100 \)\(= 8600   \)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu