Trả lời câu hỏi Bài 7 trang 88 Toán 9 Tập 2


Đề bài

Xem hình 45. Hãy chứng minh định lý trên.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng:

Số đo góc nội tiếp bằng nửa số đo cung bị chắn.

Số đo cả đường tròn bằng \(360^0.\)

Lời giải chi tiết

Xét đường tròn \((O)\) ta có:

\(\widehat {BAD} = \dfrac{1}{2}sđ\,\overparen {BCD}\) (góc nội tiếp chắn cung \(BCD\))

\(\widehat {BCD} = \dfrac{1}{2}sđ\,\overparen {BAD}\) (góc nội tiếp chắn cung \(BAD\))

Suy ra \(\widehat {BAD} + \widehat {BCD} = \dfrac{1}{2}sđ\,\overparen {BCD} + \dfrac{1}{2}sđ\,\overparen {BAD} = \dfrac{{sđ\,\overparen {BAD} + sđ\,\overparen {BCD}}}{2}\) \( = \dfrac{{360^\circ }}{2} = 180^\circ .\)

Vậy \(\widehat {BAD} + \widehat {BCD} = 180^\circ \) .

Vậy trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \(180^0\).

Loigiaihay.com

 


Bình chọn:
4 trên 7 phiếu

Các bài liên quan: - Bài 7. Tứ giác nội tiếp

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.