Đề kiểm tra 15 phút - Đề số 3 - Bài 7 - Chương 3 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 7 - Chương 3 - Hình học 9

Đề bài

Tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O). Đường tròn đường kính BC cắt AB, AC lần lượt tại E và F. BF, CE cắt nhau tại H.

a) Chứng minh H là trực tâm của tam giác ABC.

b) Gọi K là điểm đối xứng với H qua BC. Chứng minh tứ giác ABKC nội tiếp.

Phương pháp giải - Xem chi tiết

a.Sử dụng: Góc nội tiếp chắn nửa đường tròn bằng 90 độ

b.Chứng minh tứ giác ABKC có tổng 2 góc đối diện bằng 180

Lời giải chi tiết

a) Ta có :  \(\widehat {BEC} = 90^\circ \) ( BC là đường kính) hay \(CE \bot AB.\)

Tương tự \(\widehat {BFC} = 90^\circ \) \( \Rightarrow BF \bot AC\) mà BF và CE cắt nhau tại H.

\( \Rightarrow \) H là trực tâm \(∆ABC.\)

b) H’ và H đối xứng qua BC

\(\Rightarrow BH = BK, CH = CK\)

Từ đó hai tam giác BHC và BKC bằng nhau (c.c.c)

\(\left. \begin{gathered}
\Rightarrow \widehat {BKC} = \widehat {BHC} \hfill \\
\,\,\,\,\,\,\widehat {BHC'} = \widehat {EHF}\left( \text{đối đỉnh} \right) \hfill \\
\end{gathered} \right\} \Rightarrow \widehat {BKC} = \widehat {EHF}\)

Mặt khác tứ giác AEHF nội tiếp \(\left( {\widehat {AEH} + \widehat {AFH} = {{180}^o}} \right)\)

\( \Rightarrow \widehat A + \widehat {EHF} = {180^o}\)

Do đó \(\widehat A + \widehat {BKC} = {180^o}\). Vậy tứ giác ABKC nội tiếp.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 7. Tứ giác nội tiếp

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài