Lý thuyết tứ giác nội tiếp


Định nghĩa tứ giác nội tiếp

1. Định nghĩa

Một tứ giác có bốn đỉnh nằm trên một đường tròn gọi là tứ giác nội tiếp đường tròn (gọi tắt là tứ giác nội tiếp)

2. Định lí

Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng \(180^0\)

Ví dụ: Tứ giác \(ABCD\) nội tiếp đường tròn \((O)\)

=> \(\left\{\begin{matrix} \widehat{A}+\widehat{C}=180^{\circ}\\ \widehat{B}+\widehat{D}=180^{\circ} \end{matrix}\right.\)

3. Định lí đảo

Nếu tứ giác có tổng số đo hai góc đối diện bằng \(180^0\) thì tứ giác đó nội tiếp được đường tròn.

4. Một số dấu hiệu nhận biết tứ giác nội tiếp

- Tứ giác có tổng hai góc đối bằng \(180^\circ \). 

- Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó.

- Tứ giác có bốn đỉnh cách đều một điểm (mà có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.

- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới cùng một góc \(\alpha \).

 

 

 


Bình chọn:
4 trên 79 phiếu

Các bài liên quan: - Bài 7. Tứ giác nội tiếp

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài