Lý thuyết hằng đẳng thức đáng nhớ (tiếp)


Tổng hai lập phương

6. Tổng hai lập phương

Tổng của lập phương hai biểu thức bằng tích của tổng hai biểu thức và bình phương thiếu của hiệu hai biểu thức đó.

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

7. Hiệu hai lập phương

Hiệu của lập phương hai biểu thức bằng tích của hiệu hai biểu thức và bình phương thiếu của tổng hai biểu thức đó.

\({A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\)

Ta có bảy hằng đẳng thức đáng nhớ

\(1.{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\(2.{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\(3.{A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

\(4.{\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

\(5.{\left( {A - B} \right)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)

\(6.{A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

\(7.{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\)

Các dạng toán cơ bản

Dạng 1: Rút gọn biểu thức

Phương pháp:

Sử dụng các hằng đẳng thức và phép nhân đa thức để biến đổi.

Ví dụ: Rút gọn biểu thức \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

Ta có: \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \)\(= \left( {x - 1} \right)\left( {{x^2} + x.1 + {1^2}} \right) = {x^3} - 1\)

Dạng 2: Tìm \({\bf{x}}\)

Phương pháp:

Sử dụng các hằng đẳng thức và phép nhân đa thức để biến đổi để đưa về dạng tìm \(x\) thường gặp

Ví dụ: Tìm \(x\) biết \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = 8\)

Ta có: 

\(\begin{array}{l}
\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = 8\\
\Rightarrow {x^3} + {2^3} = 8\\
\Rightarrow {x^3} + 8 = 8\\
\Rightarrow {x^3} = 0\\
\Rightarrow x = 0
\end{array}\)

Vậy \(x=0.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 71 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài