Bài 38 trang 17 SGK Toán 8 tập 1

Bình chọn:
4.6 trên 115 phiếu

Giải bài 38 trang 17 SGK Toán 8 tập 1. Chứng minh các đẳng thức sau:

Đề bài

Chứng minh các đẳng thức sau:

a) \({\left( {a - b} \right)^3} =  - {\left( {b - a} \right)^3}\);

b) \({\left( { - a - b} \right)^2} = {\left( {a + b} \right)^2}\)

Phương pháp giải - Xem chi tiết

Áp dụng hằng đẳng thức đáng nhớ: lập phương của một hiệu, bình phương của một tổng, sử dụng quy tắc dấu ngoặc, ta biến đổi một vế của đẳng thức thành vế còn lại, ta được điều phải chứng minh.

Lời giải chi tiết

a) \({\left( {a - b} \right)^3} =  - {\left( {b - a} \right)^3}\)

Biến đổi vế phải thành vế trái:

\(\eqalign{
& - {\left( {b - a} \right)^3} = - ({b^3} - 3{b^2}a + 3b{a^2} - {a^3}) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = - {b^3} + 3{b^2}a - 3b{a^2} + {a^3} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \;= {a^3} - 3{a^2}b + 3a{b^2} - {b^3} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = {\left( {a - b} \right)^3} \cr} \)

Vậy \({\left( {a - b} \right)^3} =  - {\left( {b - a} \right)^3}\)

Cách 2: Sử dụng quy tắc dấu ngoặc

\(\eqalign{
& {\left( {a - b} \right)^3} = {\left[ { - \left( {b{\rm{ }}-{\rm{ }}a} \right)} \right]^3} = {\left[ {\left( { - 1} \right).\left( {b{\rm{ }}-{\rm{ }}a} \right)} \right]^3} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( { - 1} \right)^3}.{\left( {b - a} \right)^3} = \left( { - 1} \right).{\left( {b - a} \right)^3} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - {\left( {b - a} \right)^3} \cr} \)

b) \({\left( { - a - b} \right)^2} = {\left( {a + b} \right)^2}\)

Biến đổi vế trái thành vế phải:

\(\eqalign{
& {\left( { - a - b} \right)^2} = {\left[ {\left( { - a} \right) + \left( { - b} \right)} \right]^2} \cr
& = {\left( { - a} \right)^2} + 2.\left( { - a} \right).\left( { - b} \right) + {\left( { - b} \right)^2} \cr
& = {a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2} \cr} \)

Vậy \({\left( { - a - b} \right)^2} = {\left( {a + b} \right)^2}\)

Cách 2: Sử dụng quy tắc dấu ngoặc

\(\eqalign{
& {\left( { - a - b} \right)^2} = {\left[ { - \left( {a + b} \right)} \right]^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = {\left[ {\left( { - 1} \right).\left( {a + b} \right)} \right]^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \;= {\left( { - 1} \right)^2}.{\left( {a + b} \right)^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \;= 1.{\left( {a + b} \right)^2} = {\left( {a + b} \right)^2} \cr} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.