Bài 30 trang 107 SBT toán 9 tập 1


Đề bài

Đường cao \(MQ\) của tam giác vuông MNP chia cạnh huyền \(NP\) thành hai đoạn \(NQ = 3, PQ = 6\). Hãy so sánh \(cotgN\) và \(cotgP\). Tỉ số nào lớn hơn và lớn hơn bao nhiêu lần?   

Phương pháp giải - Xem chi tiết

Các tỉ số lượng giác của góc nhọn (hình vẽ) được định nghĩa như sau: 

 

 \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}};\)\(\tan \alpha  = \dfrac{{AB}}{{AC}};\cot \alpha  = \dfrac{{AC}}{{AB}}.\) 

Lời giải chi tiết

Tam giác \(MNQ\) vuông tại \(Q\) nên ta có:

\(\cot g\widehat N = \dfrac{{NQ}}{{MQ}} = \dfrac{3}{{MQ}}\)

Tam giác \(MPQ\) vuông tại \(Q\) nên ta có:

\(\cot g\widehat P =  \dfrac{{PQ}}{{MQ}} =  \dfrac{6}{{MQ}}\) 

Ta có: \( \dfrac{6}{{MQ}} >  \dfrac{3}{{MQ}}\) nên \(\cot g\widehat P > \cot g\widehat N\)

\( \dfrac{{\cot g\widehat P}}{{\cot g\widehat N}} = \dfrac{{\dfrac{6}{{MQ}}}}{{\dfrac{3}{{MQ}}}}\) = \(\dfrac{6}{ {MQ}}.\dfrac{{MQ}}{3}\) = \(\dfrac{6}{3} = 2\)

Vậy \(\cot g\widehat P = 2\cot g\widehat N.\)

Loigiaihay.com


Bình chọn:
4.4 trên 11 phiếu

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.