Bài 16 trang 195 SBT toán 9 tập 2


Giải bài 16 trang 195 sách bài tập toán 9. Một tam giác có chiều cao bằng...

Đề bài

Một tam giác có chiều cao bằng \(\dfrac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm \(3dm\) và cạnh đáy giảm đi \(2dm\) thì diện tích của hình đó tăng thêm \(12d{m^2}.\) Tính chiều cao và cạnh đáy của tam giác đó.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Cách giải bài toán bằng cách lập hệ hai phương trình bậc nhất hai ẩn :

Bước 1: Lập hệ phương trình

+ Chọn hai ẩn và đặt điều kiện thích hợp cho chúng

+ Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết

+ Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải hệ phương trình nói trên.

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết

+) Gọi chiều cao và cạnh đáy của tam giác ban đầu lần lượt là \(x\left( {dm} \right)\) và \(y\left( {dm} \right)\)\(\left( {y > x\,\,;\,\,x,y > 0} \right).\)

Ta có diện tích tam giác bằng \(\dfrac{1}{2}xy\)

Vì chiều cao bằng \(\dfrac{3}{4}\) cạnh đáy nên ta có phương trình: \(x = \dfrac{3}{4}y\)

Nếu chiều cao tăng thêm \(3dm\) và cạnh đáy giảm đi \(2dm\) thì diện tích của hình tam giác mới là \(\dfrac{1}{2}\left( {x + 3} \right)\left( {y - 2} \right)\) (với \(y>2)\) và diện tích mới này tăng \(12dm^2\) so với diện tích ban đầu nên ta có phương trình: \(\dfrac{1}{2}\left( {x + 3} \right)\left( {y - 2} \right) = \dfrac{1}{2}xy + 12\)

Từ đó, ta có hệ phương trình :

\(\left\{ \begin{gathered}x = \frac{3}{4}y \hfill \\\frac{1}{2}\left( {x + 3} \right).\left( {y - 2} \right) = \frac{1}{2}xy + 12 \hfill \\\end{gathered}  \right.\)

\( \Leftrightarrow \left\{ \begin{gathered} x - \frac{3}{4}y = 0 \hfill \\\frac{1}{2}\left( {xy - 2x + 3y - 6} \right) = \frac{1}{2}xy + 12 \hfill \\\end{gathered}  \right.\)

\( \Leftrightarrow \left\{ \begin{gathered}x - \frac{3}{4}y = 0 \hfill \\\frac{1}{2}xy - x + \frac{3}{2}y - 3 = \frac{1}{2}xy + 12 \hfill \\ \end{gathered}  \right. \)

\(\Leftrightarrow \left\{ \begin{gathered} x - \frac{3}{4}y = 0 \hfill \\  x - \frac{3}{2}y =  - 15 \hfill \\\end{gathered}  \right. \)

\(\Leftrightarrow \left\{ \begin{gathered}  \frac{3}{4}y = 15 \hfill \\  x - \frac{3}{2}y =  - 15 \hfill \\\end{gathered}  \right. \)

\(\Leftrightarrow \left\{ \begin{gathered}  y = 20 \hfill \\  x - \frac{3}{2}.20 =  - 15 \hfill \\\end{gathered}  \right. \)

\(\Leftrightarrow \left\{ \begin{gathered} x = 15\,(thỏa\,mãn) \hfill \\  y = 20 \,(thỏa\,mãn)\hfill \\\end{gathered}  \right.\)

Vậy chiều cao và cạnh đáy của tam giác ban đầu lần lượt là \(15dm\,\,;\,\,20dm.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài