Bài 7 trang 193 SBT toán 9 tập 2


Giải bài 7 trang 193 sách bài tập toán 9. Cho biểu thức: P=...

Lựa chọn câu để xem lời giải nhanh hơn

Cho biểu thức: 

\(P = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}\)

LG a

Rút gọn \(P.\)

Phương pháp giải:

Các bước rút gọn biểu thức: 

Bước 1: Điều kiện để biểu thức có nghĩa (căn thức xác định, mẫu khác không… nếu bài toán chưa cho)
Bước 2: Phân tích các mẫu thành nhân tử (áp dụng thành thạo các phép biến đổi căn thức)
+ Áp dụng quy tắc đổi dấu một cách hợp lý để làm xuất hiện nhân tử chung.
+  Thường xuyên để ý xem mẫu này có là bội hoặc ước của mẫu khác không.
Bước 3: Tiến hành quy đồng rút gọn, kết hợp với điều kiện của đề bài để kết luận.

Lời giải chi tiết:

Điều kiện \(P\) có nghĩa là \(x\ge \) và \(x\ne 1\)

Rút gọn \(P\)

\(P = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right)\)\(.\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\( = \left( {\dfrac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \dfrac{{\sqrt x  + 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}}}} \right)\)\(.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\( = \left( {\dfrac{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \dfrac{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right)\)\(.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\( = \dfrac{{\left( {x - \sqrt x  - 2} \right) - \left( {x + \sqrt x  - 2} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}\)\(.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\( = \dfrac{{ - 2\sqrt x }}{{\left( {\sqrt x  + 1} \right)\left( {x - 1} \right)}}.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\(= \dfrac{{ - \sqrt x .\left( {x - 1} \right)}}{{\sqrt x  + 1}}\)

\( = \dfrac{{ - \sqrt x \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}{{\sqrt x  + 1}}\)

\( =  - \sqrt x \left( {\sqrt x  - 1} \right)\)

\(= \sqrt x \left( {1 - \sqrt x } \right)\)

LG b

Tìm giá trị lớn nhất của \(P.\)

Phương pháp giải:

+) Biến đổi để xuất hiện hằng đẳng thức.

+) Sử dụng kiến thức: bình phương của một hiệu không âm: \((a-b)^2\ge0\) với mọi \(a,b.\)

Lời giải chi tiết:

\(P= \sqrt x \left( {1 - \sqrt x } \right)\) với \(x\ge 0, x\ne 1\)

\(P= -x+\sqrt x \)

\(P= -(x-\sqrt x) \)

\(P =  - \left( {x - 2\sqrt x .\dfrac{1}{2} + \dfrac{1}{4}} \right) + \dfrac{1}{4}\)

\(P =  - {\left( {\sqrt x  - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4}\)

Vì \({\left( {\sqrt x  - \dfrac{1}{2}} \right)^2}\ge 0\)

\(\Rightarrow-{\left( {\sqrt x  - \dfrac{1}{2}} \right)^2}\le 0\)

\(\Rightarrow-{\left( {\sqrt x  - \dfrac{1}{2}} \right)^2}+ \dfrac{1}{4}\le  \dfrac{1}{4}\)

Hay \(P\le \dfrac{1}{4}\)

Dấu \("="\) xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\) hay \(x=\dfrac{1}{4}\) (thỏa mãn)

Vậy \(P\) có giá trị lớn nhất bằng \(\dfrac{1}{4}\) khi \(x=\dfrac{1}{4}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài