Bài 7 trang 193 SBT toán 9 tập 2


Giải bài 7 trang 193 sách bài tập toán 9. Cho biểu thức: P=...

Lựa chọn câu để xem lời giải nhanh hơn

Cho biểu thức: 

\(P = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}\)

LG a

Rút gọn \(P.\)

Phương pháp giải:

Các bước rút gọn biểu thức: 

Bước 1: Điều kiện để biểu thức có nghĩa (căn thức xác định, mẫu khác không… nếu bài toán chưa cho)
Bước 2: Phân tích các mẫu thành nhân tử (áp dụng thành thạo các phép biến đổi căn thức)
+ Áp dụng quy tắc đổi dấu một cách hợp lý để làm xuất hiện nhân tử chung.
+  Thường xuyên để ý xem mẫu này có là bội hoặc ước của mẫu khác không.
Bước 3: Tiến hành quy đồng rút gọn, kết hợp với điều kiện của đề bài để kết luận.

Lời giải chi tiết:

Điều kiện \(P\) có nghĩa là \(x\ge \) và \(x\ne 1\)

Rút gọn \(P\)

\(P = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right)\)\(.\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\( = \left( {\dfrac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \dfrac{{\sqrt x  + 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}}}} \right)\)\(.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\( = \left( {\dfrac{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \dfrac{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right)\)\(.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\( = \dfrac{{\left( {x - \sqrt x  - 2} \right) - \left( {x + \sqrt x  - 2} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}\)\(.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\( = \dfrac{{ - 2\sqrt x }}{{\left( {\sqrt x  + 1} \right)\left( {x - 1} \right)}}.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\)

\(= \dfrac{{ - \sqrt x .\left( {x - 1} \right)}}{{\sqrt x  + 1}}\)

\( = \dfrac{{ - \sqrt x \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}{{\sqrt x  + 1}}\)

\( =  - \sqrt x \left( {\sqrt x  - 1} \right)\)

\(= \sqrt x \left( {1 - \sqrt x } \right)\)

LG b

Tìm giá trị lớn nhất của \(P.\)

Phương pháp giải:

+) Biến đổi để xuất hiện hằng đẳng thức.

+) Sử dụng kiến thức: bình phương của một hiệu không âm: \((a-b)^2\ge0\) với mọi \(a,b.\)

Lời giải chi tiết:

\(P= \sqrt x \left( {1 - \sqrt x } \right)\) với \(x\ge 0, x\ne 1\)

\(P= -x+\sqrt x \)

\(P= -(x-\sqrt x) \)

\(P =  - \left( {x - 2\sqrt x .\dfrac{1}{2} + \dfrac{1}{4}} \right) + \dfrac{1}{4}\)

\(P =  - {\left( {\sqrt x  - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4}\)

Vì \({\left( {\sqrt x  - \dfrac{1}{2}} \right)^2}\ge 0\)

\(\Rightarrow-{\left( {\sqrt x  - \dfrac{1}{2}} \right)^2}\le 0\)

\(\Rightarrow-{\left( {\sqrt x  - \dfrac{1}{2}} \right)^2}+ \dfrac{1}{4}\le  \dfrac{1}{4}\)

Hay \(P\le \dfrac{1}{4}\)

Dấu \("="\) xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\) hay \(x=\dfrac{1}{4}\) (thỏa mãn)

Vậy \(P\) có giá trị lớn nhất bằng \(\dfrac{1}{4}\) khi \(x=\dfrac{1}{4}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí