Bài 6 trang 193 SBT toán 9 tập 2


Giải bài 6 trang 193 sách bài tập toán 9. Chứng minh đẳng thức...

Đề bài

Chứng minh đẳng thức 

\(\left( {\dfrac{1}{{a - \sqrt a }} + \dfrac{1}{{\sqrt a  - 1}}} \right):\dfrac{{\sqrt a  + 1}}{{a - 2\sqrt a  + 1}}\)\(= \dfrac{{\sqrt a  - 1}}{{\sqrt a }}\) với \(a > 0,a \ne 1\)

Phương pháp giải - Xem chi tiết

Để chứng minh đẳng thức ta có thể biến đổi vế này thành vế kia.

Lời giải chi tiết

Biến đổi vế trái ta được:

\(VT=\left( {\dfrac{1}{{a - \sqrt a }} + \dfrac{1}{{\sqrt a  - 1}}} \right)\)\(:\dfrac{{\sqrt a  + 1}}{{a - 2\sqrt a  + 1}}\)

\(=\left( {\dfrac{1}{{ \sqrt a.(\sqrt a-1) }} + \dfrac{1}{{\sqrt a  - 1}}} \right)\)\(:\dfrac{{\sqrt a  + 1}}{{{{\left( {\sqrt a  - 1} \right)}^2}}}\) 

\(= \dfrac{{1 + \sqrt a }}{{\sqrt a \left( {\sqrt a  - 1} \right)}}:\dfrac{{\sqrt a  + 1}}{{{{\left( {\sqrt a  - 1} \right)}^2}}}\)

\( = \dfrac{{1 + \sqrt a }}{{\sqrt a \left( {\sqrt a  - 1} \right)}}.\dfrac{{{{\left( {\sqrt a  - 1} \right)}^2}}}{{\sqrt {a + 1} }}\)

\(= \dfrac{{\sqrt a  - 1}}{{\sqrt a }}(=VP)\)

Vậy đẳng thức được chứng minh.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 5 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài