Bài 15 trang 195 SBT toán 9 tập 2


Giải bài 15 trang 195 sách bài tập toán 9. Giải các phương trình sau...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau :

LG a

\(5{x^4} - 3{x^2} + \dfrac{7}{{16}}=0\)

Phương pháp giải:

+) Đưa về phương trình bậc hai bằng cách đặt ẩn phụ.

+) Đối với phương trình bậc hai \(ax^2+bx+c=0 \;(a\ne 0)\) và biệt thức \(\Delta=b^2-4ac:\)

\(-\) Nếu \(\Delta>0\) thì phương trình có hai nghiệm phân biệt \(x_1=\dfrac{-b+\sqrt{\Delta}}{2a},\)\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}.\)

\(-\) Nếu \(\Delta<0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

Đặt \({x^2} = u.\) Điều kiện \(u\ge 0.\) Phương trình trở thành \(5{u^2} - 3u + \dfrac{7}{{16}} = 0\,\,\left(  *  \right).\)

Giải phương trình \(\left(  *  \right)\) :

\(\Delta=(-3)^2-4.5.\dfrac{7}{16}=9-\dfrac{35}{4}=\dfrac{1}{4}\)

Suy ra \(\sqrt \Delta   = \dfrac{1}{2}\)

\(\Rightarrow u_1=\dfrac{3+\dfrac{1}{2}}{2.5}=\dfrac{7}{20}\)(thỏa mãn)

\(u_2=\dfrac{3-\dfrac{1}{2}}{2.5}=\dfrac{1}{4}\)(thỏa mãn)

+) \(u_1 = \dfrac{7}{{20}}\)\( \Rightarrow {x^2} = \dfrac{7}{{20}}\)\( \Rightarrow x =  \pm \sqrt {\dfrac{7}{{20}}} .\)

+) \(u_2 = \dfrac{1}{{4}}\)\( \Rightarrow {x^2} = \dfrac{1}{{4}}\)\( \Rightarrow x =  \pm \dfrac{1}{{2}}\)

Vậy phương trình đã cho có \(4\) nghiệm \(x_1=\sqrt {\dfrac{7}{{20}}} ;\) \(x_2=-\sqrt {\dfrac{7}{{20}}} ;\) \(x_3=\dfrac{1}{2};\) \(x_4=-\dfrac{1}{2}\)

LG b

\(12{x^4} - 5{x^2} + 30 = 0\)

Phương pháp giải:

+) Đưa về phương trình bậc hai bằng cách đặt ẩn phụ.

+) Đối với phương trình bậc hai \(ax^2+bx+c=0 \;(a\ne 0)\) và biệt thức \(\Delta=b^2-4ac:\)

\(-\) Nếu \(\Delta>0\) thì phương trình có hai nghiệm phân biệt \(x_1=\dfrac{-b+\sqrt{\Delta}}{2a},\)\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}.\)

\(-\) Nếu \(\Delta<0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

Đặt \({x^2} = u.\) Điều kiện \(u\ge 0.\) Phương trình trở thành \(12{u^2} - 5u + 30 = 0\,\,\left( { *  * } \right).\)

Giải phương trình \(\left( { *  * } \right)\) :

\(\Delta=(-5)^2-4.12.30\)\(=25-1440=-1415<0\)

Suy ra phương trình \((**)\) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài