Bài 69 trang 63 SBT toán 9 tập 2


Giải bài 69 trang 63 sách bài tập toán 9. Giải các phương trình trùng phương. a) x^4 + 2x^2 - x + 1 = 15x^2 - x - 35; b) 2x^4 + x^2 - 3 = x^4 + 6x^2 + 3; ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình trùng phương

LG a

\({x^4} + 2{x^2} - x + 1 = 15{x^2} - x - 35\)

Phương pháp giải:

- Biển đổi phương trình về dạng trùng phương.

- Đặt \(t=x^2\) và giải phương trình bậc hai thu được hoặc sử dụng phương pháp giải phương trình tích.

Lời giải chi tiết:

\(\displaystyle \eqalign{
& {x^4} + 2{x^2} - x + 1 = 15{x^2} - x - 35 \cr 
& \Leftrightarrow {x^4} + 2{x^2} - x + 1 - 15{x^2} + x + 35 = 0 \cr 
& \Leftrightarrow {x^4} - 13{x^2} + 36 = 0 \cr} \)

Đặt \(\displaystyle {x^2} = t;t \ge 0\).

Ta có phương trình: \(\displaystyle {t^2} - 13t + 36 = 0\)

\(\displaystyle \eqalign{
& \Delta = {\left( { - 13} \right)^2} - 4.1.36 = 169 - 144 = 25 > 0 \cr 
& \sqrt \Delta = \sqrt {25} = 5 \cr 
& {t_1} = {{13 + 5} \over {2.1}} = {{18} \over 2} = 9 \,(nhận)\cr 
& {t_2} = {{13 - 5} \over {2.1}} = {8 \over 2} = 4 \,(nhận)\cr 
& {x^2} = 9 \Leftrightarrow x = \pm 3 \cr 
& {x^2} = 4 \Leftrightarrow x = \pm 2 \cr} \)

Vậy phương trình có \(\displaystyle 4\) nghiệm: \(\displaystyle {x_1} = 3;{x_2} =  - 3;{x_3} = 2;{x_4} =  - 2\)

LG b

\(2{x^4} + {x^2} - 3 = {x^4} + 6{x^2} + 3\)

Phương pháp giải:

- Biển đổi phương trình về dạng trùng phương.

- Đặt \(t=x^2\) và giải phương trình bậc hai thu được hoặc sử dụng phương pháp giải phương trình tích.

Lời giải chi tiết:

\(\displaystyle \eqalign{
& 2{x^4} + {x^2} - 3 = {x^4} + 6{x^2} + 3 \cr & \Leftrightarrow 2{x^4} + {x^2} - 3 - {x^4} - 6{x^2} - 3=0 \cr
& \Leftrightarrow {x^4} - 5{x^2} - 6 = 0 \cr} \)

Đặt \(\displaystyle {x^2} = t \Rightarrow t \ge 0,\) ta có phương trình: \(\displaystyle {t^2} - 5t - 6 = 0\)

Phương trình có dạng: \(\displaystyle a - b + c \)\(= 1 - \left( { - 5} \right) + \left( { - 6} \right) = 0\)

Nên có hai nghiệm: \(\displaystyle {t_1} =  - 1;{t_2} =  - {{ - 6} \over 1} = 6\)

\(\displaystyle t_1= -1 < 0\): loại

\(\displaystyle t_2=6\Rightarrow {x^2} = 6 \Leftrightarrow x =  \pm \sqrt 6 \)

Vậy phương trình có \(2\) nghiệm: \(\displaystyle {x_1} = \sqrt 6 ;{x_2} =  - \sqrt 6 \)

LG c

\(3{x^4} - 6{x^2} = 0\)

Phương pháp giải:

Sử dụng phương pháp giải phương trình tích.

Lời giải chi tiết:

\(\displaystyle \eqalign{
& 3{x^4} - 6{x^2} = 0 \cr 
& \Leftrightarrow 3{x^2}\left( {{x^2} - 2} \right) = 0 \cr 
& \Leftrightarrow \left[ {\matrix{
{3{x^2} = 0} \cr 
{{x^2} - 2 = 0} \cr
} \Leftrightarrow \left[ {\matrix{
{x = 0} \cr 
{x = \pm \sqrt 2 } \cr} } \right.} \right. \cr} \)

Vậy phương trình có \(\displaystyle 3\) nghiệm: \(\displaystyle {x_1} = 0;{x_2} = \sqrt 2 ;{x_3} =  - \sqrt 2 \)

LG d

\(5{x^4} - 7{x^2} - 2 = 3{x^4} - 10{x^2} - 3\)

Phương pháp giải:

- Biển đổi phương trình về dạng trùng phương.

- Đặt \(t=x^2\) và giải phương trình bậc hai thu được hoặc sử dụng phương pháp giải phương trình tích.

Lời giải chi tiết:

\(\displaystyle 5{x^4} - 7{x^2} - 2 = 3{x^4} - 10{x^2} - 3\)

\(\Leftrightarrow  \displaystyle 5{x^4} - 7{x^2} - 2 \)\(- 3{x^4} +10{x^2} + 3=0\)

\(\Leftrightarrow 2{x^4} + 3{x^2} + 1 = 0\)

Đặt \(\displaystyle {x^2} = t \Rightarrow t \ge 0,\) ta có phương trình: \(\displaystyle 2{t^2} + 3t + 1 = 0\)

Phương trình có dạng: \(\displaystyle a - b + c = 2 - 3 + 1 = 0\)

Nên có hai nghiệm: \(\displaystyle {t_1} =  - 1;{t_2} =  - {1 \over 2}\)

Cả hai giá trị \(\displaystyle t_1\) và \(\displaystyle t_2\) đều nhỏ hơn \(\displaystyle 0\): loại.

Vậy phương trình đã cho vô nghiệm.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài