Bài 70 trang 63 SBT toán 9 tập 2


Giải bài 70 trang 63 sách bài tập toán 9. Giải các phương trình sau bằng phương pháp đặt ẩn phụ: a) (x^2 - 2x)^2 - 2x^2 + 4x - 3 = 0; ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau bằng phương pháp đặt ẩn phụ:

LG a

\({\left( {{x^2} - 2x} \right)^2} - 2{x^2} + 4x - 3 = 0\)

Phương pháp giải:

- Bước 1: Đặt ẩn phụ và điều kiện của ẩn (nếu có)

- Bước 2: Giải phương trình tìm ẩn phụ, kiểm tra điều kiện của ẩn.

- Bước 3: Thay lại giải phương trình tìm nghiệm.

Lời giải chi tiết:

\(\displaystyle \eqalign{
& {\left( {{x^2} - 2x} \right)^2} - 2{x^2} + 4x - 3 = 0 \cr 
& \Leftrightarrow {\left( {{x^2} - 2x} \right)^2} - 2\left( {{x^2} - 2x} \right) - 3 = 0 \cr} \)

Đặt \(\displaystyle {x^2} - 2x = t,\) ta có phương trình: \(\displaystyle {t^2} - 2t - 3 = 0\)

Phương trình có: 

\(\displaystyle a - b + c =  1 - \left( { - 2} \right) + \left( { - 3} \right) = 0\)

Nên có hai nghiệm: \(\displaystyle {t_1} =  - 1;{t_2} =  - {{ - 3} \over 1} = 3\)

Với \(t=-1\) ta có:

\(\displaystyle \eqalign{
& {x^2} - 2x = - 1 \Leftrightarrow {x^2} - 2x + 1 = 0 \cr 
& \Delta ' = {\left( { - 1} \right)^2} - 1.1 = 1 - 1 = 0 \cr} \)

Phương trình có nghiệm kép: \(\displaystyle x_1= x_2= 1\)

Với \(t=3\) ta có: 

\(\displaystyle {x^2} - 2x = 3 \Leftrightarrow {x^2} - 2x - 3 = 0\)

Phương trình này có: \(\displaystyle a - b + c =\displaystyle 1 - \left( { - 2} \right) + \left( { - 3} \right) = 0\)

Nên có hai nghiệm: \(\displaystyle {x_1} =  - 1;{x_2} =  - {{ - 3} \over 1} = 3\)

Vậy phương trình đã cho có \(\displaystyle 3\) nghiệm: \(\displaystyle {x_1} = 1;{x_2} =  - 1;{x_3} = 3\)

LG b

\(3\sqrt {{x^2} + x + 1}  - x = {x^2} + 3\)

Phương pháp giải:

- Bước 1: Đặt ẩn phụ và điều kiện của ẩn (nếu có)

- Bước 2: Giải phương trình tìm ẩn phụ, kiểm tra điều kiện của ẩn.

- Bước 3: Thay lại giải phương trình tìm nghiệm.

Lời giải chi tiết:

Ta có: \(\displaystyle {x^2} + x + 1 = {\left( {x + {1 \over 2}} \right)^2} + {3 \over 4} \ge 0\) với mọi \(x\)

Nên \(\displaystyle 3\sqrt {{x^2} + x + 1}  - x = {x^2} + 3\)

\(\displaystyle  \Leftrightarrow {x^2} + x + 1 - 3\sqrt {{x^2} + x + 1}  + 2 = 0\)

Đặt \(\displaystyle \sqrt {{x^2} + x + 1}  = t \Rightarrow t \ge 0,\) 

Ta có phương trình: \(\displaystyle {t^2} - 3t + 2 = 0\)

Phương trình này có dạng: \(\displaystyle a + b + c =  1 + \left( { - 3} \right) + 2 = 0\)

Nên có hai nghiệm: \(\displaystyle {t_1} = 1;{t_2} = 2\) (thỏa mãn điều kiện)

Với \(t=1\) ta có:

\(\displaystyle \eqalign{
& \sqrt {{x^2} + x + 1} = 1 \Rightarrow {x^2} + x + 1 = 1 \cr 
& \Leftrightarrow x\left( {x + 1} \right) = 0 \cr 
& \Rightarrow \left[ {\matrix{
{x = 0} \cr 
{x + 1 = 0} \cr
} \Leftrightarrow \left[ {\matrix{
{x = 0} \cr 
{x = - 1} \cr} } \right.} \right. \cr} \)

Với \(t=2\) ta có:

\(\displaystyle \eqalign{
& \sqrt {{x^2} + x + 1} = 2 \Rightarrow {x^2} + x + 1 = 4 \cr 
& \Rightarrow {x^2} + x - 3 = 0 \cr 
& \Delta = {1^2} - 4.1.\left( { - 3} \right) = 1 + 12 = 13 > 0 \cr 
& \sqrt \Delta = \sqrt {13} \cr
& {x_1} = {{ - 1 + \sqrt {13} } \over {2.1}} = {{ - 1 + \sqrt {13} } \over 2} \cr 
& {x_2} = {{ - 1 - \sqrt {13} } \over {2.1}} = {{ - 1 - \sqrt {13} } \over 2} \cr} \)

Vậy phương trình đã cho có \(\displaystyle 4\) nghiệm: \( {x_1} = 0;{x_2} = -1;\) \(\displaystyle {x_3} = {{ - 1 + \sqrt {13} } \over 2};{x_4} = {{ - 1 - \sqrt {13} } \over 2}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài