Bài 68 trang 63 SBT toán 9 tập 2


Giải bài 68 trang 63 sách bài tập toán 9. Giải các phương trình: a) 3x^2 + 4(x - 1) = (x - 1)^2 + 3; ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(3{x^2} + 4\left( {x - 1} \right) = {\left( {x - 1} \right)^2} + 3\)

Phương pháp giải:

- Biến đổi phương trình về dạng phương trình bậc hai.

- Nhẩm nghiệm hoặc dùng công thức nghiệm giải phương trình.

Lời giải chi tiết:

\(\eqalign{
& 3{x^2} + 4\left( {x - 1} \right) = {\left( {x - 1} \right)^2} + 3 \cr 
& \Leftrightarrow 3{x^2} + 4x - 4 = {x^2} - 2x + 1 + 3 \cr 
& \Leftrightarrow 2{x^2} + 6x - 8 = 0 \cr 
& \Leftrightarrow {x^2} + 3x - 4 = 0 \cr} \)

Phương trình trên có: \(a + b + c =1+3+(-4)= 0\) nên có hai nghiệm \({x_1} = 1;{x_2} = \dfrac{c}{a}=- 4 \)

Vậy phương trình đã cho có hai nghiệm \(x=1;x=-4\)

LG b

\({x^2} + x + \sqrt 3  = \sqrt 3 x + 6\)

Phương pháp giải:

- Biến đổi phương trình về dạng phương trình bậc hai.

- Nhẩm nghiệm hoặc dùng công thức nghiệm giải phương trình.

Lời giải chi tiết:

\(\eqalign{
& {x^2} + x + \sqrt 3 = \sqrt 3 x + 6 \cr 
& \Leftrightarrow {x^2} + \left( {1 - \sqrt 3 } \right)x + \sqrt 3 - 6 = 0 \cr 
& \Delta = {\left( {1 - \sqrt 3 } \right)^2} - 4.1.\left( {\sqrt 3 - 6} \right) \cr 
& = 1 - 2\sqrt 3 + 3 - 4\sqrt 3 + 24 \cr& = 28 - 6\sqrt 3 \cr 
& = 27 - 2.3\sqrt 3 + 1 \cr 
& = {\left( {3\sqrt 3 } \right)^2} - 2.3\sqrt 3 + 1 \cr 
& = {\left( {3\sqrt 3 - 1} \right)^2} > 0 \cr 
& \sqrt \Delta = \sqrt {{{\left( {3\sqrt 3 - 1} \right)}^2}} = 3\sqrt 3 - 1 \cr 
& {x_1} = {{\sqrt 3 - 1 + 3\sqrt 3 - 1} \over {2.1}} \cr& = {{4\sqrt 3 - 2} \over 2} = 2\sqrt 3 - 1 \cr 
& {x_2} = {{\sqrt 3 - 1 - 3\sqrt 3 + 1} \over {2.1}} \cr& = {{ - 2\sqrt 3 } \over 2} = - \sqrt 3 \cr} \)

LG c

\(\displaystyle{{x + 2} \over {1 - x}} = {{4{x^2} - 11x - 2} \over {\left( {x + 2} \right)\left( {x - 1} \right)}}\)

Phương pháp giải:

- Biến đổi phương trình về dạng phương trình bậc hai.

- Nhẩm nghiệm hoặc dùng công thức nghiệm giải phương trình.

Lời giải chi tiết:

Điều kiện: \(x \ne 1;x \ne  - 2\) 

\(\displaystyle{{x + 2} \over {1 - x}} = {{4{x^2} - 11x - 2} \over {\left( {x + 2} \right)\left( {x - 1} \right)}}\) 

\(\eqalign{
& \Leftrightarrow {{x + 2} \over { 1-x}} = {{11x + 2 - 4{x^2}} \over {\left( {x + 2} \right)\left( {1-x} \right)}} \cr 
& \Rightarrow {\left( {x + 2} \right)^2} = 11x + 2 - 4{x^2} \cr 
& \Leftrightarrow {x^2} + 4x + 4 = 11x + 2 - 4{x^2} \cr 
& \Leftrightarrow 5{x^2} - 7x + 2 = 0 \cr} \)

Phương trình có: \(a + b + c =5 + \left( { - 7} \right) + 2 = 0\)

Nên có hai nghiệm \({x_1} = 1;{x_2} = \dfrac{c}{a}=\displaystyle{2 \over 5}\)

\({x_1} = 1\) không thỏa mãn điều kiện: loại.

Vậy phương trình đã cho có \(1\) nghiệm: \(x = \displaystyle{2 \over 5}\)

LG d

\(\displaystyle{{{x^2} + 14x} \over {{x^3} + 8}} = {x \over {x + 2}}\)

Phương pháp giải:

- Biến đổi phương trình về dạng phương trình bậc hai.

- Nhẩm nghiệm hoặc dùng công thức nghiệm giải phương trình.

Lời giải chi tiết:

Điều kiện: \(x \ne  - 2\)

\(\displaystyle{{{x^2} + 14x} \over {{x^3} + 8}} = {x \over {x + 2}}\) 

\(\eqalign{
& \Leftrightarrow {{{x^2} + 14x} \over {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}} = {x \over {x + 2}} \cr 
& \Rightarrow {x^2} + 14x = x\left( {{x^2} - 2x + 4} \right) \cr 
& \Leftrightarrow {x^2} + 14x = {x^3} - 2{x^2} + 4x \cr 
& \Leftrightarrow {x^3} - 3{x^2} - 10x = 0 \cr 
& \Leftrightarrow x\left( {{x^2} - 3x - 10} \right) = 0 \cr 
& \Rightarrow \left[ {\matrix{
{x = 0} \cr 
{{x^2} - 3x - 10 = 0} \cr} } \right. \cr} \)

Giải phương trình: \({x^2} - 3x - 10 = 0\) 

Ta có:

\(\eqalign{
& \Delta = {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right)  = 49 > 0 \cr 
& \sqrt \Delta = \sqrt {49} = 7 \cr 
& {x_1} = {{3 + 7} \over {2.1}} = {{10} \over 2} = 5 \cr 
& {x_2} = {{3 - 7} \over {2.1}} = {{ - 4} \over 2} = - 2 \cr} \)

Giá trị \(x = -2\) không thỏa mãn điều kiện: loại.

Vậy phương trình có hai nghiệm: \(x = 0;x = 5\)

Loigiaihay.com


Bình chọn:
4.2 trên 6 phiếu
  • Bài 69 trang 63 SBT toán 9 tập 2

    Giải bài 69 trang 63 sách bài tập toán 9. Giải các phương trình trùng phương. a) x^4 + 2x^2 - x + 1 = 15x^2 - x - 35; b) 2x^4 + x^2 - 3 = x^4 + 6x^2 + 3; ...

  • Bài 70 trang 63 SBT toán 9 tập 2

    Giải bài 70 trang 63 sách bài tập toán 9. Giải các phương trình sau bằng phương pháp đặt ẩn phụ: a) (x^2 - 2x)^2 - 2x^2 + 4x - 3 = 0; ...

  • Bài 71 trang 63 SBT toán 9 tập 2

    Giải bài 71 trang 63 sách bài tập toán 9. Cho phương trình: x^2 - 2(m + 1)x + m^2 + m - 1 = 0. a) Tìm các giá trị của m để phương trình có nghiệm ...

  • Bài 72 trang 63 SBT toán 9 tập 2

    Giải bài 72 trang 63 sách bài tập toán 9. Tìm hai số biết tổng của chúng bằng 10 và tích của chúng bằng -10.

  • Bài 73 trang 63 SBT toán 9 tập 2

    Giải bài 73 trang 63 sách bài tập toán 9. Một đội thợ mỏ phải khai thác 216 tấn than trong một thời hạn nhất định. Ba ngày đầu mỗi ngày đội khai thác theo đúng định mức. Sau đó mỗi ngày họ đều khai thác vượt định mức 8 tấn ...

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.