Bài 13 trang 195 SBT toán 9 tập 2


Giải bài 13 trang 195 sách bài tập toán 9. Cho phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \({x^2} - 2x + m = 0\;\left( 1 \right).\)Với giá trị nào của \(m\) thì phương trình \(\left( 1 \right)\):

LG a

Có nghiệm \(?\)

Phương pháp giải:

+) Đối với phương trình bậc hai \(ax^2+bx+c=0 \;(a\ne 0)\) và \(b=2b'\) biệt thức \(\Delta'=b'^2-ac:\)

\(-\) Nếu \(\Delta'>0\) thì phương trình có hai nghiệm phân biệt \(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a},\)\(x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}.\)

\(-\) Nếu \(\Delta'=0\) thì phương trình có nghiệm kép \(x_1=x_2=-\dfrac{b'}{a}.\)

Lời giải chi tiết:

Phương trình \(\left( 1 \right)\) có nghiệm nếu : \(\Delta ' = 1 - m \geqslant 0\) hay \(m \leqslant 1.\)

LG b

Có hai nghiệm dương \(?\)

Phương pháp giải:

+) Đối với phương trình bậc hai \(ax^2+bx+c=0 \;(a\ne 0)\) và \(b=2b'\) biệt thức \(\Delta'=b'^2-ac:\)

\(-\) Nếu \(\Delta'>0\) thì phương trình có hai nghiệm phân biệt \(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a},\)\(x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}.\)

\(-\) Nếu \(\Delta'=0\) thì phương trình có nghiệm kép \(x_1=x_2=-\dfrac{b'}{a}.\)

+) Hệ thức Vi-ét: Nếu \(x_1; x_2\) là hai nghiệm của phương trình \(ax^2+bx+c=0 \;(a\ne 0)\) thì \(x_1+x_2=-\dfrac{b}{a}\) và \(x_1.x_2=\dfrac{c}{a}\)

Lời giải chi tiết:

Phương trình \(\left( 1 \right)\) có hai nghiệm dương nếu

\(\left\{ \begin{gathered} \Delta ' = 1 - m \geqslant 0 \hfill \\ P = {x_1}{x_2} = m > 0 \hfill \\ S = {x_1} + {x_2} = 2 > 0(luôn\,đúng)\hfill \\\end{gathered}  \right.\)

\(\Leftrightarrow \left\{ \begin{gathered}  m \le 1 \hfill \\  m > 0 \hfill  \\\end{gathered}  \right.\)

\( \Leftrightarrow 0 < m \leqslant 1.\)

LG c

Có hai nghiệm trái dấu \(?\)

Phương pháp giải:

+) Hệ thức Vi-ét: Nếu \(x_1; x_2\) là hai nghiệm của phương trình \(ax^2+bx+c=0 \;(a\ne 0)\) thì \(x_1+x_2=-\dfrac{b}{a}\) và \(x_1.x_2=\dfrac{c}{a}\)

Lời giải chi tiết:

Phương trình \(\left( 1 \right)\) có hai nghiệm trái dấu nếu :

\(P = {x_1}.{x_2} = m < 0.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài