Bài 5 trang 193 SBT toán 9 tập 2


Giải bài 5 trang 193 sách bài tập toán 9. Rút gọn...

Đề bài

Rút gọn

\( P= \dfrac{{x\sqrt x  + y\sqrt y }}{{\sqrt x  + \sqrt y }} - {\left( {\sqrt x  - \sqrt y } \right)^2}\) với \(x \ge 0,\;y \ge 0,\;{x^2} + {y^2} > 0.\)

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức: \(a^3+b^3=(a+b)(a^2-ab+b^2)\)

Lời giải chi tiết

\( P= \dfrac{{x\sqrt x  + y\sqrt y }}{{\sqrt x  + \sqrt y }} - {\left( {\sqrt x  - \sqrt y } \right)^2}\) 

\( P= \dfrac{{(\sqrt x)^3  + (\sqrt y)^3 }}{{\sqrt x  + \sqrt y }} - {\left( {\sqrt x  - \sqrt y } \right)^2}\)

\(P = \dfrac{{\left( {\sqrt x  + \sqrt y } \right)\left( {x - \sqrt {xy}  + y} \right)}}{{\sqrt x  + \sqrt y }} \)\(- \left( {x - 2\sqrt {xy}  + y} \right)\)

\(P=x-\sqrt{xy} +y-x+2\sqrt{xy}-y\)

\(P=\sqrt{xy}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài