Bài 26 trang 107 SBT toán 9 tập 1


Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), trong đó \(AB = 6cm\), \(AC = 8cm\). Tính các tỉ số lượng giác của góc \(B\), từ đó suy ra các tỉ số lượng giác của góc \(C\). 

Phương pháp giải - Xem chi tiết

Các tỉ số lượng giác của góc nhọn  (hình) được định nghĩa như sau:

 

 \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}};\)\(\tan \alpha  = \dfrac{{AB}}{{AC}};\cot \alpha  = \dfrac{{AC}}{{AB}}.\) 

Định lí Pytago vào tam giác ABC vuông tại A: \(A{B^2} + A{C^2} = B{C^2}.\)

Nếu hai góc phụ nhau thì sin góc này bằng cosin góc kia và tan góc này bằng cotan góc kia.  

Lời giải chi tiết

Áp dụng định lí Pytago vào tam giác vuông \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100\) 

Suy ra: \(BC = 10\)(cm)

Ta có:   

\(\sin \widehat B = \dfrac{{AC}}{{BC}} = \dfrac{8}{{10}} = 0,8\)

\(\cos \widehat B = \dfrac{{AB}}{{BC}} = \dfrac{6}{{10}} = 0,6\)

\(\tan\widehat B = \dfrac{{AC}}{{AB}} = \dfrac{8}{6} = \dfrac{4}{3}\)

\(\cot\widehat B  = \dfrac{{AB}}{{AC}} = \dfrac{6}{8}= \dfrac{3}{ 4}\)

Vì tam giác ABC vuông tại A nên \(\widehat B+\widehat C=90^0\)

Suy ra:

\(\sin \widehat C=\cos \widehat B=0,6\)

\(\cos \widehat C=\sin \widehat B=0,8\)

\(\tan\widehat C = \cot\widehat B = \dfrac{3}{ 4}\)

\(\cot\widehat C = \tan\widehat B = \dfrac{4}{ 3}\)

Loigiaihay.com


Bình chọn:
4.6 trên 13 phiếu

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài