Bài 29 trang 107 SBT toán 9 tập 1


Giải bài 29 trang 107 sách bài tập toán 9. Xét quan hệ giữa hai góc trong mỗi biểu thức rồi tính:...sin32..cos58...

Lựa chọn câu để xem lời giải nhanh hơn

Xét quan hệ giữa hai góc trong mỗi biểu thức rồi tính:

LG a

\(\dfrac{{\sin 32^\circ }}{{\cos 58^\circ }};\)

Phương pháp giải:

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \) 

Lời giải chi tiết:

Ta có: \(32^\circ  + 58^\circ  = 90^\circ \)

Suy ra: \(\sin 32^\circ  = \cos 58^\circ .\) Vậy \(\dfrac{{\sin 32^\circ }}{{\cos 58^\circ }} =\dfrac{{\cos 58^\circ }}{{\cos 58^\circ }}= 1.\)

LG b

\(tg76^\circ  - \cot g14^\circ \).   

Phương pháp giải:

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \) 

Lời giải chi tiết:

Ta có: \(76^\circ  + 14^\circ  = 90^\circ \)

Suy ra: \(tg76^\circ  = cot g14^\circ .\)

Vậy \(tg76^\circ  - cot g14^\circ =cot g14^\circ -cot g14^\circ  = 0.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 11 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài