Bài 22 trang 106 SBT toán 9 tập 1


Đề bài

Cho tam giác \(ABC\) vuông tại \(A\). Chứng minh rằng: \(\dfrac{{\sin \widehat B}}{{\sin \widehat C}} = \dfrac{{AC}}{{AB}}.\)

Phương pháp giải - Xem chi tiết

Các tỉ số lượng giác của góc nhọn (hình vẽ) được định nghĩa như sau:

 

 \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}};\)\(\tan \alpha  = \dfrac{{AB}}{{AC}};\cot \alpha  = \dfrac{{AC}}{{AB}}.\) 

Lời giải chi tiết

Tam giác \(ABC\) có \(\widehat A = 90^\circ \).  

Ta có: \(\sin \widehat B = \dfrac{{AC}}{{BC}};\sin \widehat C = \dfrac{{AB}}{{BC}}\)

Suy ra: \(\dfrac{{\sin \widehat B}}{{\sin \widehat C}} = \dfrac{{\dfrac{{AC}}{{BC}}}}{{\dfrac{{AB}}{{BC}}}} = \dfrac{{AC}}{{BC}}.\dfrac{{BC}}{{AB}} = \dfrac{{AC}}{{AB}}.\)

Loigiaihay.com


Bình chọn:
4.5 trên 11 phiếu

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài