Bài 2.15 phần bài tập bổ sung trang 110 SBT toán 9 tập 1


Đề bài

Hãy tính: 

a)   \(2\sin 30^\circ  - 2c{\rm{os}}60^\circ  + tg45^\circ \) ;

b)   \(\sin 45^\circ  - \cot g60^\circ .c{\rm{os30}}^\circ \);

c)   \(\cot g44^\circ .\cot g45^\circ .\cot g46^\circ \) ;  

Phương pháp giải - Xem chi tiết

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \)

Lời giải chi tiết

a)  Vì \({30^0} + {60^0} = {90^0} \Rightarrow \cos {60^0}=\sin {30^0}\) nên ta có: 

\(\begin{array}{l}
2\sin 30^\circ - 2c{\rm{os}}60^\circ + tg45^\circ \\
= 2\sin 30^\circ - 2\sin 30^\circ + tg45^\circ \\
= tg45^\circ \\
= 1.
\end{array}\)

b)  Vì \({30^0} + {60^0} = {90^0} \Rightarrow \cot g{60^0} = tg {30^0}\) nên ta có: 

\(\begin{array}{l}
\sin 45^\circ + \cot g60^\circ .c{\rm{os30}}^\circ \\
= \sin 45^\circ + tg30^\circ .c{\rm{os30}}^\circ \\
{\rm{ = sin}}45^\circ + \dfrac{{\sin 30^\circ }}{{{\rm{cos30}}^\circ }}.c{\rm{os30}}^\circ \\
= \sin 45^\circ + \sin 30^\circ \\
= \dfrac{{\sqrt 2 }}{2} + \dfrac{1}{2}\\
= \dfrac{{\sqrt 2 + 1}}{2}.
\end{array}\)

c) Vì \({44^0} + {46^0} = {90^0} \Rightarrow \cot g{44^0} = tg {46^0}\) và \(tg {46^0}.\cot g{46^0} = 1\) nên ta có: 

\(\begin{array}{l}
\cot g44^\circ .\cot g45^\circ .\cot g46^\circ \\
= tg46^\circ .\cot g46^\circ .\cot g45^\circ \\
= \cot g45^\circ \\
= 1.
\end{array}\)

Loigiaihay.com


Bình chọn:
4.1 trên 8 phiếu

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài