Bài 63 trang 62 SGK Toán 8 tập 1

Bình chọn:
3.6 trên 16 phiếu

Giải bài 63 trang 62 SGK Toán 8 tập 1. Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số.

Đề bài

Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của \(x\) để giá trị của phân thức cũng là số nguyên:

a) \({{3{x^2} - 4x - 17} \over {x + 2}}\) ;                                 b) \({{{x^2} - x + 2} \over {x - 3}}\)

Phương pháp giải - Xem chi tiết

Để giá trị của phân thức là số nguyên thì tử thức chia hết cho mẫu thức.

Lời giải chi tiết

a) Ta có:

Do đó:  \({{3{x^2} - 4x - 17} \over {x + 2}} = 3x - 10 + {3 \over {x + 2}}\) 

Để phân thức là số nguyên thì \({3 \over {x + 2}}\) phải là số nguyên (với giá trị nguyên của \(x\)).

\({3 \over {x + 2}}\) nguyên thì x +2 phải là ước của 3.

Các ước của 3 là  \( \pm 1, \pm 3\) . Do đó \( x+2 \in \{ -3; \; -1;\; 1; \;3\}\).

Ta có bảng sau: 

Vậy \(x \in  \{- 5; \;- 3;\; - 1;\; 1\}.\)

Cách khác:

\({{3{x^2} - 4x - 17} \over {x + 2}} = {{\left( {3{x^2} + 6x} \right) - \left( {10x + 20} \right) + 3} \over {x + 2}}\) 

\(={{3x\left( {x + 2} \right) - 10\left( {x + 2} \right) + 3} \over {x + 2}}\)

\(=3x - 10 + {3 \over {x + 2}}\)

Rồi làm tiếp tục như trên ta được kết quả \(x \in  \{- 5; \;- 3;\; - 1;\; 1\}.\)

b) Ta có:

\({{{x^2} - x + 2} \over {x - 3}} = x + 2 + {8 \over {x - 3}}\)

Để  \({{{x^2} - x + 2} \over {x - 3}}\) là nguyên thì \({8 \over {x - 3}}\) phải nguyên. Suy ra x – 3 là ước của 8.

Các ước của 8 là \( \pm 1, \pm 2, \pm 4, \pm 8\).

Do đó \( x-3 \in \{ -8; \; -4;\; -2; \;-1; \;1;\;2;\;4; \; 8 \}\).

Ta có bảng sau:

Vậy \(x \in \{  - 5;\; - 1;\; 1; \;2;\;4;\; 5;\;7;\; 11\}\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan