Bài 62 trang 62 SGK Toán 8 tập 1


Giải bài 62 trang 62 SGK Toán 8 tập 1. Tìm giá trị của x để giá trị của phân thức bằng 0.

Đề bài

Tìm giá trị của \(x\) để giá trị của phân thức \(\dfrac{{{x^2} - 10x + 25}}{{{x^2} - 5x}}\) bằng \(0\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Phân thức đại số của biến \(x\) có dạng \( \dfrac{A(x)}{B(x)}\)  được xác định khi \(B(x) \ne 0\).

- Áp dụng tính chất:  phân thức \( \dfrac{A(x)}{B(x)}=0\) khi \(A(x) = 0\), (điều kiện \(B(x) \ne 0\)). 

Lời giải chi tiết

Điều kiện xác định:

\({x^2} - 5x \ne 0\) \(\Rightarrow x\left( {x - 5} \right) \ne 0\)

\( \Rightarrow x \ne 5\) và \( x - 5 \ne 0\)

\(\Rightarrow x \ne 0\) và \(x \ne 5\).

Do đó điều kiện của biến là \(x \ne 0\) và \( x \ne 5\)

Rút gọn phân thức:

\(\eqalign{
& {{{x^2} - 10x + 25} \over {{x^2} - 5x}} \cr
& = {{{x^2} - 2.x.5 + {5^2}} \over {x\left( {x - 5} \right)}} \cr
& = {{{{\left( {x - 5} \right)}^2}} \over {x\left( {x - 5} \right)}} = {{x - 5} \over x} \cr} \)

Nếu phân thức đã cho có giá trị bằng \(0\) thì phân thức rút gọn cũng có giá trị bằng \(0\), tức là  \(\dfrac{{x - 5}}{x} = 0\)

\( \Rightarrow x - 5 = 0\) hay \(x = 5\).

Tuy nhiên,  \(x = 5\) không thỏa mãn điều kiện xác định của biến.

Vậy không có giá trị nào của \(x\) để giá trị của phân thức đã cho bằng \(0\).

Loigiaihay.com


Bình chọn:
4.2 trên 32 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài