Bài 57 trang 61 SGK Toán 8 tập 1

Bình chọn:
3.4 trên 23 phiếu

Giải bài 57 trang 61 SGK Toán 8 tập 1. Chứng tỏ mỗi cặp phân thức sau bằng nhau:

Đề bài

Chứng tỏ mỗi cặp phân thức sau bằng nhau:

a) \({3 \over {2x - 3}}\) và \({{3x + 6} \over {2{x^2} + x - 6}}\);

b) \({2 \over {x + 4}}\) và \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\).

Phương pháp giải - Xem chi tiết

Cách 1: Dùng định nghĩa hai phân thức bằng nhau:

Hai phân thức \( \frac {A}{B}\) và \( \frac {C}{D} \)  gọi là bằng nhau nếu \(AD=BC \).

Cách 2: Rút gọn phân thức đại số.

Lời giải chi tiết

a) \({3 \over {2x - 3}}\) và \({{3x + 6} \over {2{x^2} + x - 6}}\)

Cách 1: Dùng định nghĩa hai phân thức bằng nhau.

Ta có:

+ ) \(3\left( {2{x^2} + x - 6} \right) = 6{x^2} + 3x - 18\)

+) \(\left( {2x - 3} \right)\left( {3x + 6} \right)\) \(= 6{x^2} + 12x - 9x - 18 \) \(= 6{x^2} + 3x - 18\)

Do đó: \(3\left( {2{x^2} + x - 6} \right)  = \left( {2x - 3} \right)\left( {3x + 6} \right) \) 

Vậy \({3 \over {2x - 3}}\)= \({{3x + 6} \over {2{x^2} + x - 6}}\)

Cách 2: Rút gọn phân thức

\({{3x + 6} \over {2{x^2} + x - 6}} = {{3\left( {x + 2} \right)} \over {2{x^2} + 4x - 3x - 6}} = {{3\left( {x + 2} \right)} \over {2x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}\)     

\(= {{3\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {2x - 3} \right)}} = {3 \over {2x - 3}}\)

b) \({2 \over {x + 4}}\) và \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)

Cách 1:

Ta có:

+) \(2\left( {{x^3} + 7{x^2} + 12x} \right) \) \(= 2{x^3} + 14{x^2} + 24x\)

+) \(\left( {x + 4} \right)\left( {2{x^2} + 6x} \right) \) \(= 2{x^3} + 6{x^2} + 8{x^2} + 24x \) \(= 2{x^3} + 14{x^2} + 24x\)

Do đó \(2\left( {{x^3} + 7{x^2} + 12x} \right)\) \( = \left( {x + 4} \right)\left( {2{x^2} + 6x} \right)\)

Vậy \({2 \over {x + 4}} = {{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)

Cách 2: Rút gọn phân thức 

\({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}} = {{2x\left( {x + 3} \right)} \over {x\left( {{x^2} + 7x + 12} \right)}} = {{2\left( {x + 3} \right)} \over {{x^2} + 3x + 4x + 12}}\)

\( = {{2\left( {x + 3} \right)} \over {x\left( {x + 3} \right) + 4\left( {x + 3} \right)}} = {{2\left( {x + 3} \right)} \over {\left( {x + 3} \right)\left( {x + 4} \right)}} = {2 \over {x + 4}}\)

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan