Bài 59 trang 62 SGK Toán 8 tập 1


Giải bài 59 trang 62 SGK Toán 8 tập 1. a) Cho biểu thức. Thay vào biểu thức đã cho rồi rút gọn biểu thức.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a.

Cho biểu thức  \(\dfrac{{xP}}{{x + P}} - \dfrac{{yP}}{{y - P}}\). Thay \(P = \dfrac{{xy}}{{x - y}}\) vào biểu thức đã cho rồi rút gọn biểu thức.

Phương pháp giải:

Thay đa thức \(P\) vào biểu thức đã cho rồi áp dụng các quy tắc cộng, trừ, nhân, chia đa thức để rút gọn biểu thức.

Lời giải chi tiết:

Với \(P = \dfrac{{xy}}{{x - y}}\)

Ta có: 

\(\dfrac{{xP}}{{x + P}} - \dfrac{{yP}}{{y - P}}\)

\( = \dfrac{{x.\dfrac{{{x}y}}{{x - y}}}}{{x + \dfrac{{xy}}{{x - y}}}} - \dfrac{{y.\dfrac{{x{y}}}{{x - y}}}}{{y - \dfrac{{xy}}{{x - y}}}}\)

\( = \dfrac{{\dfrac{{{x^2}y}}{{x - y}}}}{{\dfrac{{x\left( {x - y} \right) + xy}}{{x - y}}}} - \dfrac{{\dfrac{{x{y^2}}}{{x - y}}}}{{\dfrac{{y\left( {x - y} \right) - xy}}{{x - y}}}}\)

\( = \dfrac{{\dfrac{{{x^2}y}}{{x - y}}}}{{\dfrac{{{x^2} - xy + xy}}{{x - y}}}} - \dfrac{{\dfrac{{x{y^2}}}{{x - y}}}}{{\dfrac{{xy - {y^2} - xy}}{{x - y}}}} \)

\(= \dfrac{{\dfrac{{{x^2}y}}{{x - y}}}}{{\dfrac{{{x^2}}}{{x - y}}}} - \dfrac{{\dfrac{{x{y^2}}}{{x - y}}}}{{\dfrac{{ - {y^2}}}{{x - y}}}}\)

\( = \left( {\dfrac{{{x^2}y}}{{x - y}}:\dfrac{{x^2}}{{{x-y}}}} \right) - \left( {\dfrac{{x{y^2}}}{{x - y}}:\dfrac{{-y^2}}{{ x- {y}}}} \right)\)

\( = \left( {\dfrac{{{x^2}y}}{{x - y}}.\dfrac{{x - y}}{{{x^2}}}} \right) - \left( {\dfrac{{x{y^2}}}{{x - y}}.\dfrac{{x - y}}{{ - {y^2}}}} \right)\)

\( = \dfrac{{{x^2}y}}{{{x^2}}} - \dfrac{{x{y^2}}}{{ - {y^2}}} = y-(x)=y + x = x + y\)

LG b.

Cho biểu thức \(\dfrac{{{P^2}{Q^2}}}{{{P^2} - {Q^2}}}\). Thay \(P = \dfrac{{2xy}}{{{x^2} - {y^2}}}\) và \(Q = \dfrac{{2xy}}{{{x^2} + {y^2}}}\) vào biểu thức đã cho rồi rút gọn biểu thức.

Phương pháp giải:

Thay các đa thức \(P, \; Q\) vào biểu thức đã cho rồi áp dụng các quy tắc cộng, trừ, nhân, chia đa thức để rút gọn biểu thức.

Lời giải chi tiết:

Với \(P = \dfrac{{2xy}}{{{x^2} - {y^2}}}\) và \(Q = \dfrac{{2xy}}{{{x^2} + {y^2}}}\)

Ta có:

\(\dfrac{{{P^2}{Q^2}}}{{{P^2} - {Q^2}}} = \dfrac{{{{\left( {\dfrac{{2xy}}{{{x^2} - {y^2}}}} \right)}^2}.{{\left( {\dfrac{{2xy}}{{{x^2} + {y^2}}}} \right)}^2}}}{{{{\left( {\dfrac{{2xy}}{{{x^2} - {y^2}}}} \right)}^2} - {{\left( {\dfrac{{2xy}}{{{x^2} + {y^2}}}} \right)}^2}}}\)

\( = \dfrac{{{{\left[ {\dfrac{{2xy.2xy}}{{\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}}} \right]}^2}}}{{\dfrac{{4{x^2}{y^2}}}{{{{\left( {{x^2} - {y^2}} \right)}^2}}} - \dfrac{{4{x^2}{y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}}}\)

\( = \dfrac{{\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}{{\dfrac{{4{x^2}{y^2}{{\left( {{x^2} + {y^2}} \right)}^2} - 4{x^2}{y^2}{{\left( {{x^2} - {y^2}} \right)}^2}}}{{{{\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]}^2}}}}}\)

\( = \dfrac{{\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}{{\dfrac{{4{x^2}{y^2}\left[ {{{\left( {{x^2} + {y^2}} \right)}^2} - {{\left( {{x^2} - {y^2}} \right)}^2}} \right]}}{{{{\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]}^2}}}}}\)

\( = \dfrac{{\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}{{\dfrac{{4{x^2}{y^2}.({x^4} + 2{x^2}{y^2} + {y^4} - {x^4} + 2{x^2}{y^2} - {y^4})}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}\)

\( = \dfrac{{\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}{{\dfrac{{4{x^2}{y^2}.4{x^2}{y^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = \dfrac{{\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}{{\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}}}\)

\( = \dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}:\dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}\)

\( = \dfrac{{{{\left( {4{x^2}{y^2}} \right)}^2}}}{{{{\left( {{x^4} - {y^4}} \right)}^2}}}.\dfrac{{{{\left( {{x^4} - {y^4}} \right)}^2}}}{{{{\left( {4{x^2}{y^2}} \right)}^2}}} = 1\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 44 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài