Bài 59 trang 62 sgk toán 8 tập 1

Bình chọn:
3.8 trên 12 phiếu

a)Cho biểu thức. Thay vào biểu thức đã cho rồi rút gọn biểu thức.

a) Cho biểu thức  \({{xP} \over {x + P}} - {{yP} \over {y - P}}\). Thay \(P = {{xy} \over {x - y}}\) vào biểu thức đã cho rồi rút gọn biểu thức.

b) Cho biểu thức \({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\). Thay \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)vào biểu thức đã cho rồi rút gọn biểu thức.

Hướng dẫn làm bài:      

a) Với \(P = {{xy} \over {x - y}}\)

Ta có:\({{xP} \over {x + P}} - {{yP} \over {y - P}} = {{{{{x^2}y} \over {x - y}}} \over {x + {{xy} \over {x - y}}}} - {{{{x{y^2}} \over {x - y}}} \over {y - {{xy} \over {x - y}}}}\)

=\({{{x^2}y} \over {{x^2}}} - {{x{y^2}} \over {{y^2}}} = y + x = x + y\)

b) Với \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)

Ta có:\({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\)\( = {{{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2}.{{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}} \over {{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2} - {{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}}}\)\( = {{{{\left[ {{{2xy.2xy} \over {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}}} \right]}^2}} \over {{{4{x^2}{y^2}} \over {{{\left( {{x^2} - {y^2}} \right)}^2}}} - {{4{x^2}{y^2}} \over {{{\left( {{x^2} + {y^2}} \right)}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}\left[ {{{\left( {{x^2} + {y^2}} \right)}^2} - {{\left( {{x^2} - {y^2}} \right)}^2}} \right]} \over {{{\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.({x^4} + 2{x^2}{y^2} + {y^4} - {x^4} + 2{x^2}{y^2} - {y^4}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.4{x^2}{y^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = {{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = 1\)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan