Bài 3 trang 131 SGK Toán 8 tập 2

Bình chọn:
3.7 trên 15 phiếu

Giải bài 3 trang 131 SGK Toán 8 tập 2. Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K.

Đề bài

Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:

a) Hình thoi?

b) Hình chữ nhật?

Phương pháp giải - Xem chi tiết

Áp dụng: Dấu hiệu nhận biết hình bình hành, hình thoi.

Lời giải chi tiết

Ta có: CE ⊥ AB(gt)

KB ⊥ AB (gt)

Suy ra BK // CH        (1)

Tương tự BH // KC (2)

Từ (1) và (2) ta được :

Tứ giác BHCK là hình bình hành (dấu hiệu nhận biết hình bình hành)

Gọi M là giao điểm của hai đường chéo BC và HK.

a) BHCK là hình thoi khi và chỉ khi HM ⊥ BC (dấu hiệu nhận biết hình thoi)

Vì HA ⊥ BC nên HM ⊥ BC  ⇔A, H, M thẳng hàng. Tam giác ABC cân tại A.

b) BHCK là hình chữ nhật  ⇔ BH ⊥ HC.

Ta lại có BE ⊥ HC, CD ⊥ BH nên BH ⊥ HC ⇔ H, D, E  trùng nhau. Khi đó H, D, E cũng trùng với A. Vậy tam giác ABC là tam giác vuông ở A.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Ôn tập cuối năm - Hình học - Toán 8

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu