Bài 11 trang 132 SGK Toán 8 tập 2


Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy \(AB = 20\, cm\), cạnh bên \(SA = 24\,cm.\)

a) Tính chiều cao \(SO\) rồi tính thể tích của hình chóp.

b) Tính diện tích toàn phần của hình chóp.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính thể tích và diện tích toàn phần của hình chóp tứ giác đều.

Lời giải chi tiết

 

a) Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(ABCD\) là hình vuông. 

Do đó, \(B{\rm{D}} = \sqrt{AB^2+AD^2}\)\(=\sqrt{20^2+20^2}  = 20\sqrt 2 \,cm\)  

Vì \(SO\) là đường cao nên \(SO \bot \left( {ABC{\rm{D}}} \right)\) hay \(\Delta {\rm{OSD}}\) vuông tại \(O.\)

Áp dụng định lí Pitago ta có:

\(S{O^2} = S{D^2} - O{D^2} \)\(\,= {24^2} - {\left( {\dfrac{{20\sqrt 2 }}{2}} \right)^2}\) \( = 376\)

\( \Rightarrow SO=\sqrt{376} \approx 19,4\left( {cm} \right)\)

\(V =\dfrac{1}{3}{.20^2}.\sqrt{376}\approx 2585,43\) (cm3

b) Gọi \(H\) là trung điểm của \(CD\). Suy ra SH vuông góc với CD (do tam giác SCD cân tại S) 

Xét tam giác SHD vuông tại H, theo định lý Pytago ta có:  

\(S{H^2} = S{D^2} - D{H^2} = {24^2} - {\left( {\dfrac{{20}}{2}} \right)^2} \) \(= 476\)

\( \Rightarrow SH=\sqrt {476}  ≈ 21,8 (cm)\) 

\({S_{xq}} = p.d = \dfrac{1}{2}.4.20.\sqrt {476} \approx 872,7\) (cm2)

\({S_đ} = A{B^2} = {20^2} = 400\left( {c{m^2}} \right)\) 

\({S_{tp}} = {S_{xq}} + {S_đ} = 872,7 + 400 = 1272,7\) \({\left( {cm} \right)^2}\) 

Loigiaihay.com


Bình chọn:
4.1 trên 15 phiếu
  • Bài 10 trang 132 SGK Toán 8 tập 2

    Giải bài 10 trang 132 SGK Toán 8 tập 2. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 12 cm, AD = 16 cm, AA’ = 25 cm.

  • Bài 9 trang 132 SGK Toán 8 tập 2

    Giải bài 9 trang 132 SGK Toán 8 tập 2. Cho tam giác ABC có AB < AC, D là một điểm nằm giữa A và C. Chứng minh rằng

  • Bài 8 trang 132 SGK Toán 8 tập 2

    Giải bài 8 trang 132 SGK Toán 8 tập 2. Trên hình 151 cho thấy ta có thể xác định chiều rộng BB’ của khúc song bằng cách xét hai tam giác đồng dạng ABC và AB’C’.

  • Bài 7 trang 132 SGK Toán 8 tập 2

    Giải bài 7 trang 132 SGK Toán 8 tập 2. Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E.

  • Bài 6 trang 132 SGK Toán 8 tập 2

    Giải bài 6 trang 132 SGK Toán 8 tập 2. Cho tam giác ABC và đường trung tuyến BM. Trên đoạn thẳng BM lấy điểm D sao cho . Tia AD cắt BC ở K. Tìm tỉ số diện tích của tam giác ABK và tam giác ABC.

  • Bài 5 trang 132 SGK Toán 8 tập 2

    Giải bài 5 trang 132 SGK Toán 8 tập 2. Trong tam giác ABC các đường trung tuyến AA’ và BB’ cắt nhau ở G. Tính diện tích tam giác ABC biết rằng diện tích tam giác ABG bằng S.

  • Bài 4 trang 132 SGK Toán 8 tập 2

    Giải bài 4 trang 132 SGK Toán 8 tập 2. Cho hình bình hành ABCD. Các điểm M, N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, K là giao điểm của BN và CM.

  • Bài 3 trang 131 SGK Toán 8 tập 2

    Giải bài 3 trang 131 SGK Toán 8 tập 2. Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K.

  • Bài 2 trang 131 SGK Toán 8 tập 2

    Giải bài 2 trang 131 SGK Toán 8 tập 2. Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều.

  • Bài 1 trang 131 SGK Toán 8 tập 2

    Giải bài 1 trang 131 SGK Toán 8 tập 2. Dựng hình thang ABCD (AB// CD), biết ba cạnh: AD = 2cm, CD = 4 cm, BC = 3cm và đường chéo AC = 5 cm.

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.