Bài 14 trang 75 SGK Toán 8 tập 1


Giải bài 14 trang 75 SGK Toán 8 tập 1. Đố. Trong các tứ giác ABCD và EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

Đề bài

Trong các tứ giác \(ABCD\) và \(EFGH\) trên giấy kẻ ô vuông (h.\(31\)), tứ giác nào là hình thang cân? Vì sao?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Để chứng minh một hình thang là hình thang cân, ta sử dụng một trong các cách sau:

   - Chứng minh hai góc kề một đáy bằng nhau 

   - Chứng minh hai đường chéo bằng nhau

+ Định lý Pytago: \(ΔABC\) vuông tại \(A\) ta có: \(AB^2 + AC^2 = BC^2.\)

Lời giải chi tiết

(Coi mỗi cạnh của 1 ô vuông nhỏ là 1cm) 

+ Xét tứ giác \(ABCD\)

Nhận thấy \(AB // CD\)

\(⇒\) Tứ giác \(ABCD\) là hình thang.

Lấy thêm điểm \(K\) như hình vẽ, ta có \(AK=4cm, CK=1cm\)

Xét \(ΔACK\) vuông tại \(K\), theo định lý Pytago ta có:

\(AC^2 = AK^2 + KC^2 = 4^2 + 1^2 = 17\)

Tương tự, từ hình vẽ ta có \(BD\) là cạnh huyền của tam giác vuông có độ dài 2 cạnh góc vuông là 4cm và 1cm.

Theo định lý Pytago ta có: \(BD^2 = 4^2 + 1^2 = 17\)

\(⇒ AC^2 = BD^2\)

\(⇒ AC = BD\)

Vậy hình thang \(ABCD\) có hai đường chéo \(AC = BD\) nên là hình thang cân.

+ Xét tứ giác \(EFGH\)

\(FG // EH ⇒\) Tứ giác \(EFGH\) là hình thang.

Lại có: \(EG = 4\,cm\) (hình vẽ)

Vì \(FH\) là cạnh huyền của tam giác vuông có độ dài 2 cạnh góc vuông là 2cm và 2cm (hình vẽ) nên theo định lý Pytago ta có:

\(FH^2 = 2^2 + 3^2 = 13 \)

\(⇒ FH =\sqrt {13} ≠ EG\)

Vậy hình thang \(EFGH\) có hai đường chéo không bằng nhau nên không phải hình thang cân.

Loigiaihay.com


Bình chọn:
4.3 trên 164 phiếu

Các bài liên quan: - Bài 3. Hình thang cân

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài