
1. Đa giác-đa giác lồi
Định nghĩa:
+ Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất
kì cạnh nào của đa giác đó.
+ Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.
Chú ý:
+ Đa giác \(n\) đỉnh \(\left( {n \ge 3} \right)\) được gọi là hình \(n\)- giác hay hình \(n\)-cạnh.
+ Tổng các góc của đa giác $n$ cạnh bằng $\left( {n - 2} \right).180^\circ $ .
+ Mỗi góc của đa giác đều $n$ cạnh bằng \(\dfrac{{\left( {n - 2} \right).180^\circ }}{n}\).
+ Số các đường chéo của đa giác lồi $n$ cạnh bằng \(\dfrac{{n\left( {n - 3} \right)}}{2}\) .
2. Diện tích
Diện tích hình chữ nhật:
Diện tích hình chữ nhật bằng tích hai kích thước của nó: \(S = a.b\) .
Diện tích hình vuông
Diện tích vuông bằng bình phương cạnh của nó: \(S = {a^2}\) .
Diện tích tam giác vuông
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông: \(S = \dfrac{{ab}}{2}\) .
Diện tích tam giác thường
Diện tích tam giác bằng nửa tích một cạnh với chiều cao ứng với cạnh đó: \(S = \dfrac{1}{2}ah\) .
Diện tích hình thang
Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao: \(S = \dfrac{{\left( {a + b} \right)h}}{2}\)
Diện tích hình bình hành
Diện tích hình bình hành bằng tích một cạnh với chiều cao ứng với cạnh đó: \(S = a.h\) .
Diện tích tứ giác có hai đường chéo vuông góc
Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo
Diện tích hình thoi
Diện tích hình thoi bằng nửa tích hai đường chéo: \(S = \dfrac{1}{2}{d_1}.{d_2}\)
Giải bài 47 trang 133 SGK Toán 8 tập 1. Vẽ ba đường trung tuyến của một tam giác (h.162). Chứng minh sáu tam giác: 1, 2, 3, 4, 5, 6 có diện tích bằng nhau.
Giải bài 46 trang 133 SGK Toán 8 tập 1. Cho tam giác ABC. Gọi M, N là các trung điểm tương ứng của AC, BC. Chứng minh rằng diện tích của hình thang ABNM bằng 3/4 diện tích của tam giác ABC.
Giải bài 45 trang 133 SGK Toán 8 tập 1. Hai cạnh của một hình bình hành có độ dài là 6 cm và 4 cm. Một trong các đường cao có độ dài là 5 cm. Tính độ dài đường cao kia.
Giải bài 44 trang 133 SGK Toán 8 tập 1. Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO.
Giải bài 43 trang 132 SGK Toán 8 tập 1. Cho hình vuông ABCD có tâm đối xứng O, cạnh a.
Giải bài 42 trang 132 SGK Toán 8 tập 1. Trên hình 160 (AC//BF), hãy tìm tam giác có diện tích bằng diện tích của tứ giác ABCD.
Giải bài 41 trang 132 SGK Toán 8 tập 1. Cho hình chữ nhật ABCD. Gọi H, I, E, K lần lượt là các trung điểm của BC, HD, DC, EC (h.159)
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: