Bài 44 trang 133 SGK Toán 8 tập 1

Bình chọn:
3.8 trên 36 phiếu

Giải bài 44 trang 133 SGK Toán 8 tập 1. Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO.

Đề bài

Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO.

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính diện tích tam giác.

Lời giải chi tiết

Từ O kẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.

Ta có OH1  ⊥ AB (gt)

Mà AB // CD (gt)

Nên OH  ⊥ CD

Do đó  \({S_{ABO}} + {S_{CDO}} \)\(= {1 \over 2}O{H_1}.AB + {1 \over 2}O{H_2}.CD\)

= \({1 \over 2}AB\left( {O{H_1} + O{H_2}} \right)\)

= \({1 \over 2}.AB.{H_1}{H_2}\)

Nên   \({S_{ABO}} + {S_{CDO}} = {1 \over 2}{S_{ABCD}}\) ( 1)

Tương tự  \({S_{BCO}} + {S_{DAO}} = {1 \over 2}{S_{ABCD}}\) (2)

Từ (1) và (2) suy ra :

 \({S_{ABO}} + {S_{CDO}} = {S_{BCO}} + {S_{DAO}}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Ôn tập chương II: Đa giác. Diện tích đa giác

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu