Đề số 7 - Đề kiểm tra học kì 1 - Toán 8>
Tải vềĐáp án và lời giải chi tiết Đề số 7 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 8
Đề bài
Bài 1 (2 điểm)Phân tích các đa thức sau thành nhân tử:
a)\(2{x^3}y - 50xy\)
b)\({x^2} - 6x - 4{y^2} + 9\)
Bài 2 (1 điểm)Thực hiện phép tính:
a)\(\left( {x - 3} \right)\left( {{x^2} + 4x + 5} \right)\)
b)\(\left( {2{x^3} - 4{x^2} - 5x + 7} \right):\left( {x - 1} \right)\)
Bài 3 (2,5 điểm)Tìm số thực\(x\), biết:
a)\(2{x^3} - 2{x^2} + 2017x - 2017 = 0\)
b)\(2{x^2} + 4x = 0\)
Bài 4 (2,5 điểm)Cho biểu thức \(A = \dfrac{{{x^2}}}{{{x^2} - 4}} - \dfrac{x}{{x - 2}} + \dfrac{2}{{x + 2}}\)
a)Tìm điều kiện của \(x\) để biểu thức xác định.
b)Rút gọn biểu thức A.
c)Tính giá trị của biểu thức A khi \(\left| {2x - 1} \right| = 1\).
Bài 5 (4 điểm)Cho \(\Delta MNP\) vuông tại \(M\), đường cao \(MH\). Biết \(MN = 3cm,\,NP = 5cm\). Gọi \(D,\,\,E\) lần lượt là chân các đường vuông góc hạ từ\(H\) xuống \(MN\) và \(MP\).
a)Tính diện tích \(\Delta MNP\).
b)Chứng minh tứ giác \(M{\rm{D}}HE\) là hình chữ nhật.
c)Tính độ dài đoạn \(DE\).
d)Gọi \(A\) là trung điển của \(HP\). Tính \(\angle DE{\rm{A}}\).
Bài 6 (0,5 điểm)Cho \(a + b = 1\). Tính giá trị của biểu thức:
\(S = {a^3} + {b^3} + 3ab\left( {{a^2} + {b^2}} \right) + 6{a^2}{b^2}\left( {a + b} \right)\)
LG bài 1
Lời giải chi tiết:
Bài 1.
\(\begin{array}{l}a)\,\,2{x^3}y - 50xy = 2xy\left( {{x^2} - 25} \right) \\= 2xy\left( {x - 5} \right)\left( {x + 5} \right)\\b)\,\,{x^2} - 6x - 4{y^2} + 9 = \left( {{x^2} - 6x + 9} \right) - 4{y^2}\\ = {\left( {x - 3} \right)^2} - {\left( {2y} \right)^2}\\ = \left( {x - 3 - 2y} \right)\left( {x - 3 + 2y} \right)\end{array}\)
LG bài 2
Lời giải chi tiết:
Bài 2:
\(\begin{array}{l}a)\,\,\left( {x - 3} \right)\left( {{x^2} + 4x + 5} \right) \\= {x^3} + 4{x^2} + 5x - 3{x^2} - 12x - 15 \\= {x^3} + {x^2} - 7x - 15\\b)\;\left( {2{x^3} - 4{x^2} - 5x + 7} \right):\left( {x - 1} \right)\\ = \left( {2{x^3} - 2{x^2} - 2{x^2} + 2x - 7x + 7} \right):\left( {x - 1} \right)\\ = \left[ {2{x^2}\left( {x - 1} \right) - 2x\left( {x - 1} \right) - 7\left( {x - 1} \right)} \right]:\left( {x - 1} \right)\\ = \left( {x - 1} \right)\left( {2{x^2} - 2x - 7} \right):\left( {x - 1} \right)\\ = 2{x^2} - 2x - 7.\end{array}\)
LG bài 3
Lời giải chi tiết:
Bài 3
\(\begin{array}{l}a)\,\,2{x^3} - 2{x^2} + 2017x - 2017 = 0\\ \Leftrightarrow 2{x^2}\left( {x - 1} \right) + 2017\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {2{x^2} + 2017} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\2{x^2} + 2017 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\2{x^2} = - 2017\left( {vn} \right)\end{array} \right.\end{array}\)
Vậy phương trình có 1 nghiệm duy nhất \(x = 1\)
\(\begin{array}{l}b)\,\,2{x^2} + 4x = 0\\ \Leftrightarrow 2x\left( {x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\end{array}\)
Vậy phương trình có 2 nghiệm \(x = 0\)và \(x = - 2\)
LG bài 4
Lời giải chi tiết:
Bài 4:
\(a)\;\;A = \dfrac{{{x^2}}}{{{x^2} - 4}} - \dfrac{x}{{x - 2}} + \dfrac{2}{{x + 2}}\)
Điều kiện xác định: \(\left\{ \begin{array}{l}{x^2} - 4 \ne 0\\x - 2 \ne 0\\x + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\x \ne 2\\x \ne - 2\end{array} \right. \Leftrightarrow x \ne \pm 2\)
\(\begin{array}{l}b)\;\;A = \dfrac{{{x^2}}}{{{x^2} - 4}} - \dfrac{x}{{x - 2}} + \dfrac{2}{{x + 2}}\\\;\;\;\;\;\;\; = \dfrac{{{x^2} - x\left( {x + 2} \right) + 2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\\;\;\;\;\;\;\;\; = \dfrac{{{x^2} - {x^2} - 2x + 2x - 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \dfrac{{ - 4}}{{{x^2} - 4}}.\end{array}\)
c) Ta có: \(\left| {2x - 1} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 1\\2x - 1 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\end{array} \right.\)
Thay \(x = 1\) vào \(A\) ta có: \(\dfrac{{ - 4}}{{{x^2} - 4}} = \dfrac{{ - 4}}{{1 - 4}} = \dfrac{{ - 4}}{{ - 3}} = \dfrac{4}{3}.\)
Thay \(x = 0\) vào \(A\) ta có: \(\dfrac{{ - 4}}{{{x^2} - 4}} = \dfrac{{ - 4}}{{0 - 4}} = \dfrac{{ - 4}}{{ - 4}} = 1.\)
LG bài 5
Lời giải chi tiết:
a) Xét \({\Delta }MNP\), áp dụng định lý Py-ta-go ta có:
\(M{P^2} + N{M^2} = N{P^2}\)
\(\Rightarrow M{P^2} = N{P^2} - N{M^2} = {5^2} - {3^2} = 16\)
\(\Rightarrow MP = 4\,cm.\)
Diện tích \(\Delta MNP\) có: \(\dfrac{{MP.MN}}{2} = \dfrac{{3.4}}{2} = 6\,c{m^2}\)
b) Ta có: \(\left\{ \begin{array}{l}HE \bot MP\\H{\rm{D}} \bot MN\end{array} \right.\left( {gt} \right) \Rightarrow \angle HEM = \angle H{\rm{D}}M = {90^0}\)
Xét tứ giác \(M{\rm{D}}HE\) có: \(\angle DME = \angle M{\rm{D}}H = \angle HEM = {90^0} \Rightarrow M{\rm{D}}HE\) là hình chữ nhật (dhnb)
c) Ta có: \({S_{MNP}} = \dfrac{1}{2}MN.MP = \dfrac{1}{2}MH.NP\)
\(\begin{array}{l} \Leftrightarrow MH.NP = MN.MP\\ \Leftrightarrow MH.5 = 3.4\\ \Leftrightarrow MH = \dfrac{{12}}{5} = 2,4\;cm.\end{array}\)
Lại có \(MDHE\) là hình chữ nhật (cmt) \( \Rightarrow MH = DE = 2,4\;cm\)(hai đường chéo hình chữ nhật).
d)Vì \(M{\rm{D}}HE\) là hình chữ nhật (cmt)
\( \Rightarrow \angle DEH = \angle MHE\) (tính chất hình chữ nhật)
Xét \({\Delta _v}HEP\) có \(A\) là trung điểm của \(HP\left( {gt} \right) \Rightarrow E{\rm{A}}\) là đường trung tuyến của tam giác \(HEP.\)
\( \Rightarrow E{\rm{A}} = \dfrac{{HP}}{2} = HA\) (tính chất trong tam giác vuông có đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy)
\( \Rightarrow \Delta HA{\rm{E}}\) là tam giác cân tại A (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow \angle AHE = \angle A{\rm{E}}H\) (tính chất tam giác cân)
Mà \(\angle MHE + \angle EHA = {90^0}\left( {gt} \right) \)
\(\Rightarrow \angle DEH + \angle A{\rm{E}}H = {90^0} \)
\(\Rightarrow \angle DE{\rm{A}} = {90^{^0}}\)
LG bài 6
Lời giải chi tiết:
Vì \(a + b = 1\) nên ta có:
\(\begin{array}{l}S = {a^3} + {b^3} + 3ab\left( {{a^2} + {b^2}} \right) + 6{a^2}{b^2}\left( {a + b} \right)\\\;\;\;= \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) + 3ab\left( {{a^2} + {b^2}} \right) + 6{a^2}{b^2}.1\\\;\;\; = 1.\left( {{a^2} - ab + {b^2}} \right) + 3ab\left( {{a^2} + {b^2} + 2ab} \right) \\\;\;\;= {a^2} - ab + {b^2} + 3ab{\left( {a + b} \right)^2}\\\;\;\; = {a^2} - ab + {b^2} + 3ab.1 \\\;\;\;= {a^2} - ab + {b^2} + 3ab = {a^2} + 2ab + {b^2}\\\;\;\; = {\left( {a + b} \right)^2} = 1\end{array}\)
Xem thêm: Lời giải chi tiết Đề kiểm tra học kì 1 (Đề thi học kì 1) môn Toán 8 tại Tuyensinh247.com
Loigiaihay.com
- Đề số 8 - Đề kiểm tra học kì 1 - Toán 8
- Đề số 9 - Đề kiểm tra học kì 1 - Toán 8
- Đề số 10 - Đề kiểm tra học kì 1 - Toán 8
- Đề số 11 - Đề kiểm tra học kì 1 - Toán 8
- Đề số 12 - Đề kiểm tra học kì 1 - Toán 8
>> Xem thêm