Đề số 17 - Đề kiểm tra học kì 1 - Toán 8


Đáp án và lời giải chi tiết Đề số 17 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1.Phân tích đa thức \({x^2} + 4{y^2} + 4xy - 16\) thành nhân tử.

Bài 2.Thực hiện phép tính: \({{2x + 6} \over {3{x^2} - x}}:{{{x^2} + 3x} \over {1 - 3x}}.\)

Bài 3.Cho biểu thức \(P = {{8{x^3} - 12{x^2} + 6x - 1} \over {4{x^2} - 4x + 1}}.\)

a)Tìm điều kiện xác định của biểu thức P.

b)Chứng minh rằng mọi giá trị của x nguyên thì P nguyên.

Bài 4.Chứng minh rằng \(\left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right):{{2x - 6} \over {{x^2} + 6x}} + {x \over {6 - x}} =  - 1.\)

Bài 5.Tìm chiều cao AH của hình thang ABCD \(\left( {AB\parallel CD} \right)\) biết AB = 7cm, đường trung bình MN = 9cm và diện tích hình thang bằng \(45c{m^2}\).

Bài 6.Cho tam giác ABC vuông tại A \(\left( {AB < AC} \right).\) Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.

a)Chứng minh tư giác AMIN là hình chữ nhật.

b)Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.

c)Cho AC = 20cm, BC = 25cm. Tính diện tích \(\Delta ABC.\)

d)Đường thẳng BN cắt cạnh DC tại K. Chứng minh: \({{DK} \over {DC}} = {1 \over 3}.\) 

LG bài 1

Lời giải chi tiết:

Bài 1. \({x^2} + 4{y^2} + 4xy - 16\)

\(= {\left( {x + 2y} \right)^2} - 16\)

\(= \left( {x + 2y - 4} \right)\left( {x + 2y + 4} \right).\)

LG bài 2

Lời giải chi tiết:

Bài 2. Điều kiện: \(x \ne 0;x \ne  \pm {1 \over 3}.\)

\({{2x + 6} \over {3{x^2} - x}}:{{{x^2} + 3x} \over {1 - 3x}} = {{2\left( {x + 3} \right)} \over {x\left( {3x - 1} \right)}}.{{1 - 3x} \over {x\left( {x + 3} \right)}} = {{ - 2\left( {3x - 1} \right)} \over {x\left( {3x - 1} \right)}} =  - {2 \over x}.\)

LG bài 3

Lời giải chi tiết:

Bài 3. a)Điều kiện: \(4{x^2} - 4x + 1 \ne 0\) hay \({\left( {2x - 1} \right)^2} \ne 0\) hay \(2x - 1 \ne 0\)

Vậy \(x \ne {1 \over 2}.\)

b) Ta có: \(P = {{{{\left( {2x - 1} \right)}^3}} \over {{{\left( {2x - 1} \right)}^2}}} = 2x - 1.\)

Vậy với mọi \(x \in Z \Rightarrow 2x - 1 \in Z\) hay \(x \in Z\)

LG bài 4

Lời giải chi tiết:

Bài 4. Điều kiện: \(x \ne  \pm 6;x \ne 0.\) Biến đổi vế trái (VT), ta được:

\(VT = {{{x^2} - {{\left( {x - 6} \right)}^2}} \over {x\left( {{x^2} - 36} \right)}}:{{2\left( {x - 3} \right)} \over {x\left( {x + 6} \right)}} + {x \over {6 - x}} = {{12x - 36} \over {x\left( {{x^2} - 36} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x - 3} \right)}} + {x \over {6 - x}}\)

\( = {{12\left( {x - 3} \right)} \over {2\left( {x - 6} \right)\left( {x - 3} \right)}} + {x \over {6 - x}} = {6 \over {x - 6}} - {x \over {x - 6}} = {{6 - x} \over {x - 6}} =  - 1\) (đpcm)

LG bài 5

Lời giải chi tiết:

Ta có:  \(MN = {{AB + CD} \over 2} \Rightarrow 2MN = AB + CD\)

\( \Rightarrow CD = 2MN - AB = 2.9 - 7 = 11\left( {cm} \right)\)

Lại có: \({S_{ABCD}} = {{\left( {AB + CD} \right)AH} \over 2}\)

\( \Rightarrow 2{S_{ABCD}} = \left( {AB + CD} \right).AH\)

\( \Rightarrow AH = {{2{S_{ABCD}}} \over {AB + CD}} = {{2.45} \over {7 + 11}} = 5\left( {cm} \right)\)

LG bài 6

Lời giải chi tiết:

a) Ta có AMIN là hình chữ nhật (có 3 góc vuông)

b) \(\Delta ABC\) vuông có AI là trung tuyến nên \(AI = IC = {1 \over 2}BC\)

Do đó \(\Delta AIC\) cân có đường cao IN đồng thời là trung tuyến

\( \Rightarrow NA = NC.\)

Lại có: ND = NI (t/c đối xứng) nên ADCI là hình bình hành có \(AC \bot ID\) (gt). Do đó ADCI là hình thoi.

c) Ta có: \(A{B^2} = B{C^2} - A{C^2}\) (định lý Py – ta – go)

                      \( = {25^2} - {20^2} \Rightarrow AB = \sqrt {225}  = 15\left( {cm} \right)\)

Vậy \({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}.15.20 = 150\left( {c{m^2}} \right)\) .

d) Kẻ \(IH\parallel BK\) ta có IH là đường trung bình của \(\Delta BKC\)

\( \Rightarrow H\) là trung điểm của CK hay KH = HC (1)

Xét \(\Delta DIH\) có N là trung điểm của DI, \(NK\parallel IH\left( {BK\parallel IH} \right).\)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) \( \Rightarrow DK = KH = HC \Rightarrow {{DK} \over {DC}} = {1 \over 3}.\) 

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài