Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 4 - Đại số 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Giải phương trình :

a)\(\left( {9 - {x^2}} \right).\sqrt {2 - x}  = 0\)                     

b) \(\sqrt {x - 1} .\sqrt {x + 4}  = 6.\)

Bài 2: Tìm m để parabol (P  ): \(y =  - {1 \over 4}{x^2}\) và đường thẳng (d): \(y = mx - 2m - 1\) tiếp xúc với nhau. Tìm tọa độ tiếp điểm.

Bài 3: Tìm m để phương trình \({x^2} + mx + 1 = 0\) có hai nghiệm x­1, x­2 và thỏa mãn \({{{x_1}} \over {{x_2}}} + {{{x_2}} \over {{x_1}}} = 7.\)

Bài 4: Một xe ô tô đi từ A đến B cách nhau 80km. Vì khởi hành chậm 16 phút so với dự định nên phải tăng vận tốc thêm 10km/h so với dự định, vì vậy ô tô đến đúng giờ. Tính vận tốc dự định của ô tô.

LG bài 1

Phương pháp giải:

Hai phương trình đã cho là 2 phương trình tích

Chú ý: Tìm điều kiện trước khi GPT

Lời giải chi tiết:

a) \(\left( {9 - {x^2}} \right)\sqrt {2 - x}  = 0\)

\(\Leftrightarrow \left\{ \matrix{  2 - x \ge 0 \hfill \cr  \left[ \matrix{  2 - x = 0 \hfill \cr  9 - {x^2} = 0 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x \le 2 \hfill \cr  \left[ \matrix{  x = 2 \hfill \cr  x =  \pm 3 \hfill \cr}  \right. \hfill \cr}  \right.\)

\(\Leftrightarrow \left[ \matrix{  x = 2 \hfill \cr  x =  - 3. \hfill \cr}  \right.\)

b) \(\sqrt {x - 1} .\sqrt {x + 4}  = 6\)

\(\Leftrightarrow \left\{ \matrix{  x \ge 1 \hfill \cr  \sqrt {\left( {x - 1} \right)\left( {x + 4} \right)}  = 6 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  x \ge 1 \hfill \cr  {x^2} + 3x - 4 = 36 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ge 1 \hfill \cr  {x^2} + 3x - 40 = 0 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  x \ge 1 \hfill \cr  \left[ \matrix{  x =  - 8 \hfill \cr  x = 5 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow x = 5.\)

LG bài 2

Phương pháp giải:

Xét phương trình hoành độ giao điểm của (P) và (d)

(P) và (d) tiếp xúc nhau khi và chỉ khi phương trình trên có nghiệm kép \( \Leftrightarrow \Delta  = 0 \) giải ra tìm được m

Thế m vào pt ban đầu giải ra ta tìm đượcx=> tọa độ tiếp điểm

Lời giải chi tiết:

: Phương trình hoành độ điểm chung ( nếu có) của (P  ) và (d) :

\( - {1 \over 4}{x^2} = mx - 2m - 1\)

\(\Leftrightarrow {x^2} + 4mx - 8m - 4 = 0\,\,\,\left( * \right)\)

(P  ) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép

\( \Leftrightarrow \Delta ' = 0 \Leftrightarrow 4{m^2} + 8m + 4 = 0 \)\(\;\Leftrightarrow m =  - 1.\)

Khi \(m = − 1\) : (*) \(\Leftrightarrow {x^2} - 4x + 4 = 0 \Leftrightarrow x = 2\)

Vậy tọa độ tiếp điểm là \(( 2; − 1).\)

LG bài 3

Phương pháp giải:

Phương trình có nghiệm \(x_2;x_2\) \( \Leftrightarrow ∆ ≥ 0  \)

Sử dụng hệ thức vi-ét để tìm tổng và tích hai nghiệm  

\({x_1} + {x_2} =  - \frac{b}{a};{x_1}.{x_2} = \frac{c}{a}\)

Biến đổi biểu thức đã cho về tổng và tích hai nghiệm rồi thế hệ thức Vi-ét vào biểu thức trên ta tìm được m

Lời giải chi tiết:

Phương trình có nghiệm \(x_2;x_2\) \( \Leftrightarrow ∆ ≥ 0  \Leftrightarrow m^2– 4 ≥ 0  \Leftrightarrow\)\( \left| m \right| \ge 2\)

Theo định lí Vi-ét, ta có : \({x_1} + {x_2} =  - m;\,\,\,\,\,\,{x_1}{x_2} = 1\)

Vậy : \({{{x_1}} \over {{x_2}}} + {{{x_2}} \over {{x_1}}} = 7 \Leftrightarrow {{x_1^2 + x_2^2} \over {{x_1}{x_2}}} = 7 \)

\(\Leftrightarrow {{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \over {{x_1}{x_2}}} = 7\)

\( \Leftrightarrow {m^2} - 2 = 7 \Leftrightarrow {m^2} = 9\)

\(\Leftrightarrow m =  \pm 3\) ( nhận).

LG bài 4

Phương pháp giải:

Để giải bài toán bằng cách lập phương trình ta làm theo các bước:

Bước 1: Lập phương trình

   + Chọn ẩn và đặt điều kiện cho ẩn

   + Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.

   + Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình              

Bước 3: Đối chiếu điều kiện rồi kết luận.

Lời giải chi tiết:

Gọi \(x\) là vận tốc dự định của xe ( \(x > 0;\; x\) tính bằng km/h).

Thời gian dự định là \({{80} \over x}\)( giờ). Khi tăng thêm 10km/h thì thời gian đi hết quãng đường là \({{80} \over {x + 10}}\)( giờ). Ta có phương trình :

\({{80} \over x} = {{80} \over {x + 10}} + {4 \over {15}}\) ( 16 phút = \({4 \over {15}}\)( giờ)

\( \Leftrightarrow x^2+ 10x -3000 = 0\)

\(\Leftrightarrow  \left[ {\matrix{   {{\rm{x}} = 50\left( {{\text{nhận}}} \right)}  \cr   {{\rm{x}} =  - 60\left( {{\text{loại}}} \right)}  \cr  } } \right.\) 

Vậy vận tốc dự định là \(50\) km/h.

 Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 8 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài